Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338764

RESUMO

The kallikrein-kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected.


Assuntos
Receptor B2 da Bradicinina , Tirosina 3-Mono-Oxigenase , Camundongos , Masculino , Feminino , Animais , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Bradicinina/farmacologia , Receptor B1 da Bradicinina/metabolismo , Peso Corporal , Camundongos Knockout
2.
Artigo em Inglês | MEDLINE | ID: mdl-37638996

RESUMO

The author identified the genes and proteins of human enzymes involved in the biosynthesis of catecholamines (dopamine, norepinephrine, epinephrine) and tetrahydrobiopterin (BH4): tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine ß-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), and GTP cyclohydrolase I (GCH1). In Parkinson's disease (PD), the activities and levels of mRNA and protein of all catecholamine-synthesizing enzymes are decreased, especially in dopamine neurons in the substantia nigra. Hereditary GCH1 deficiency results in reductions in the levels of BH4 and the activities of TH, causing decreases in dopamine levels. Severe deficiencies in GCH1 or TH cause severe decreases in dopamine levels leading to severe neurological symptoms, whereas mild decreases in TH activity in mild GCH1 deficiency or in mild TH deficiency result in only modest reductions in dopamine levels and symptoms of DOPA-responsive dystonia (DRD, Segawa disease) or juvenile Parkinsonism. DRD is a treatable disease and small doses of L-DOPA can halt progression. The death of dopamine neurons in PD in the substantia nigra may be related to (i) inflammatory effect of extra neuronal neuromelanin, (ii) inflammatory cytokines which are produced by activated microglia, (iii) decreased levels of BDNF, and/or (iv) increased levels of apoptosis-related factors. This review also discusses progress in gene therapies for the treatment of PD, and of GCH1, TH and AADC deficiencies, by transfection of TH, AADC, and GCH1 via adeno-associated virus (AAV) vectors.

3.
Anim Genet ; 54(4): 570-575, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37185969

RESUMO

Excitability is a pivotal quality in guide dogs because moderately active dogs are more trainable. Excessive activity is associated with behavioral problems and pet surrender. Excitability is a highly heritable trait, yet the relevant genetic factors and markers associated with this condition are poorly characterized. In the present study, we selected six single nucleotide polymorphisms (SNPs) of two genes that are possibly related to excitability in dogs (TH c.264G > A, TH c.1208A > T, TH c.415C > G, TH c.168C > T, TH c.180C > T and MAOB c.199 T > C). We measured the excitability of dogs using seven variables from three behavioral tests: the play test (interest in play, grabbing in throw and tug-of-war), the chase test (following and forward grabbing) and the passive test (moving range and moving time). These behavioral tests are part of the Dog Mentality Assessment developed by Svartberg & Forkman. The activity scores in the guide dog group were higher than in the temperament withdrawal group, and significant differences were detected in the aggregate score (p = 0.02), passive activity score (p = 0.007) and moving range score (p = 0.04). Analysis using the Kruskal-Wallis test and non-parametric Steel-Dwass test to evaluate the relationship between these SNPs and behavioral variable scores revealed that TH c.264G > A was associated with aggregate scores of excitability-related behavioral variables (adj. p = 0.03), object-interaction activity scores (adj. p = 0.03), following scores (adj. p = 0.03) and forward grabbing scores (adj. p = 0.03) in Labrador dogs and MAOB c.199 T > C was associated with moving range scores in these dogs (adj. p = 0.004). However, these results had low power. To explain the behavioral traits, further genetic studies more reliable than candidate gene studies are needed.


Assuntos
Polimorfismo de Nucleotídeo Único , Cães , Animais , Fenótipo
4.
Int J Neurosci ; 133(3): 278-289, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33781148

RESUMO

PURPOSE OF THE STUDY: granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor existing in neutrophils, glial cells and neurons. Increasing researches discovered that G-CSF improved cell survival in neurodegenerative diseases by its anti-inflammatory effect. However, the effect of G-CSF in suppressing inflammation in Parkinson's disease (PD) remains unclear. Thus, the purpose of this study is to explored the anti-inflammatory effect of G-CSF in mouse model of PD. MATERIALS AND METHODS: G-CSF was administrated in the PD model induced by MPTP. Subsequently, the protein of tyrosine hydroxylase (TH), ionized calcium-binding adaptor molecule 1 (Iba-1) and the inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) in the midbrain were examined. In addition, the phosphorylated mitogen-activated protein kinases (MAPK) including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 MAPK in the midbrain were investigated. RESULTS: Compared with the MPTP group, the protein of TH in the midbrain was increased, while the Iba-1 and the inflammatory factors were decreased. In addition, the expression of phosphorylated JNK (p-JNK) in the midbrain of the MPTP + G-CSF group was decreased, while the phosphorylated ERK (p-ERK) levels were elevated. CONCLUSIONS: These findings emphasize that G-CSF inhibited the degradation of DA neurons. The protective effect is associated with the reduction of the inflammatory factors caused by the inhibition of the microglial activation. Moreover, G-CSF may decrease the inflammatory factors through the decrease of P-JNK and the increase of P-ERK.


Assuntos
Doença de Parkinson , Fator de Necrose Tumoral alfa , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Interleucina-1beta , Neurônios Dopaminérgicos , Fator Estimulador de Colônias de Granulócitos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
5.
J Cell Physiol ; 234(7): 11861-11870, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30536670

RESUMO

Tyrosine hydroxylase (TH), catalyzing the conversion of tyrosine into l-DOPA, is the rate-limiting enzyme in dopamine synthesis. Defects in insulin action contribute to alterations of TH expression and/or activity in the brain and insulin increases TH levels in 1-methyl-4-phenylpyridinium (MPP+)-treated neuronal cells. However, the molecular mechanisms underlying the regulation of TH by insulin have not been elucidated yet. Using PC12 cells, we show for the first time that insulin increases TH expression in a biphasic manner, with a transient peak at 2 hr and a delayed response at 16 hr, which persists for up to 24 hr. The use of a dominant negative hypoxia-inducible factor 1-alpha (HIF-1α) and its pharmacological inhibitor chetomin, together with chromatin immunoprecipitation (ChIP) experiments for the specific binding to TH promoter, demonstrate the direct role of HIF-1α in the early phase. Moreover, ChIP experiments and transfection of a dominant negative of the nerve growth factor IB (Nur77) indicate the involvement of Nur77 in the late phase insulin response, which is mediated by HIF-1α. In conclusion, the present study shows that insulin regulates TH expression through HIF-1α and Nur77 in PC12 cells, supporting the critical role of insulin signaling in maintaining an appropriate dopaminergic tone by regulating TH expression in the central nervous system.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insulina/farmacologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Animais , Hipóxia Celular/fisiologia , Dopamina/metabolismo , Insulina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Ratos , Ativação Transcricional/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima
6.
Int J Mol Sci ; 20(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163651

RESUMO

Pigmentation plays a vital role in insect survival and reproduction. Many melanin pathway genes have been studied in holometabolous insects; however, they have only been studied in two hemimetabolous insect genera, Oncopeltus and Periplaneta. Here we analyzed three melanin pathway genes (TH, yellow, and aaNAT) using RNA interference (RNAi) in another hemimetabolous insect, namely the twin-spotted assassin bug, Platymeris biguttatus. TH was highly expressed in freshly molted nymphs and adults. TH RNAi resulted in a complete loss of black pigment, with yellow coloration maintained. Therefore, black pigment in this assassin bug is solely generated from the melanin pathway, whereas yellow pigment is generated from other unknown pigmentation pathways. yellow and aaNAT were highly expressed in the white spot of the hemelytra. Downregulation of yellow caused a brown phenotype with high mortality, indicating an important role of yellow functions in cuticle formation and in the process of converting melanin from brown to black. Interestingly, aaNAT RNAi caused not only loss of white pigment, but also loss of yellow and red pigments. This phenotype of aaNAT has not been reported in other insects. Our results provide new information for understanding the melanin pathway in which aaNAT is essential for the formation of colorless patterns.


Assuntos
Regulação da Expressão Gênica , Genes de Insetos , Heterópteros/genética , Heterópteros/metabolismo , Melaninas/metabolismo , Pigmentação/genética , Transdução de Sinais , Animais , Arilalquilamina N-Acetiltransferase/genética , Fenótipo , Tirosina 3-Mono-Oxigenase/genética
7.
Int J Legal Med ; 132(1): 187-195, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28401305

RESUMO

It has been a puzzling forensic task to determine the cause of death as a result of old myocardial infarction (OMI) in the absence of recognizable acute myocardial infarction. Recent studies indicated that the heterogeneous cardiac nerve sprouting and sympathetic hyperinnervation at border zones of the infarcted site played important roles in sudden cardiac death (SCD). So, the present study explored the value of growth associated protein-43 (GAP-43) and tyrosine hydroxylase (TH) as objective and specific neural biomarkers combined with Masson-trichrome staining for forensic autopsy cases. Myocardium of left ventricle of 58 medicolegal autopsy cases, 12 OMI cases, 12 acute/OMI cases, and 34 control cases, were immunostained with anti-GAP-43 and anti-TH antibodies. Immunoreactivity of GAP-43 and TH identified nerve fibers and vascular wall in OMI cases and acute/OMI cases. Specifically, TH-positive nerve fibers were abundant at border zones of the infarcted site. There were a few GAP-43 and TH expressions in the control cases. With Masson-trichrome staining, collagen fibers were blue and cardiac muscle fibers were pink in marked contrast with the surrounding tissue, which improved the location of nerve fibers. Thus, these findings suggest that immunohistochemical detection of GAP-43 and TH combined with Masson-trichrome staining can provide the evidence for the medicolegal expertise of SCD due to OMI, and further demonstrate a close relationship between sympathetic hyperinnervation and SCD.


Assuntos
Proteína GAP-43/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Coloração e Rotulagem/métodos , Tirosina 3-Mono-Oxigenase/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Morte Súbita Cardíaca/patologia , Feminino , Coração/inervação , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/patologia , Miocárdio/patologia , Fibras Nervosas/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Adulto Jovem
8.
J Cell Biochem ; 117(4): 917-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26364587

RESUMO

Parkinson's disease (PD) is a common chronic neurodegenerative disorder associated with aging that primarily caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SN). Retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells (SH-SY5Y+RA) have been broadly utilized in studies of mechanisms of the pathogenesis underlying 1-Methyl-4-phenyl pyridinium (MPP(+))-induced PD models. Here, we investigated the neuroprotective mechanisms of insulin on MPP(+)-induced neurotoxicity on SH-SY5Y+RA cells. Recent studies suggest that insulin has a protective effect against oxidative stress but not been elucidated for PD. In this study, pretreatment of insulin prevented the cell death in a dose dependent manner and lowered nitric oxide (NO) release, reactive oxygen species (ROS), and calcium ion (Ca(2+)) influx induced by MPP(+). Insulin also elevated tyrosine hydroxylase (TH) and insulin signaling pathways in dopaminergic neuron through activating PI3K/Akt/GSK-3 survival pathways which in turn inhibits MPP(+)-induced iNOS and ERK activation, and Bax to Bcl-2 ratio. These results suggest that insulin has a protective effect on MPP(+)-neurotoxicity in SH-SY5Y+RA cells.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Citotoxinas/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Insulina/farmacologia , Fármacos Neuroprotetores/farmacologia , 1-Metil-4-fenilpiridínio/antagonistas & inibidores , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/antagonistas & inibidores , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tretinoína/farmacologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
9.
Development ; 140(24): 4850-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24227652

RESUMO

COUP-TFI is an orphan nuclear receptor acting as a strong transcriptional regulator in different aspects of forebrain embryonic development. In this study, we investigated COUP-TFI expression and function in the mouse olfactory bulb (OB), a highly plastic telencephalic region in which continuous integration of newly generated inhibitory interneurons occurs throughout life. OB interneurons belong to different populations that originate from distinct progenitor lineages. Here, we show that COUP-TFI is highly expressed in tyrosine hydroxylase (TH)-positive dopaminergic interneurons in the adult OB glomerular layer (GL). We found that odour deprivation, which is known to downregulate TH expression in the OB, also downregulates COUP-TFI in dopaminergic cells, indicating a possible correlation between TH- and COUP-TFI-activity-dependent action. Moreover, we demonstrate that conditional inactivation of COUP-TFI in the EMX1 lineage results in a significant reduction of both TH and ZIF268 expression in the GL. Finally, lentiviral vector-mediated COUP-TFI deletion in adult-generated interneurons confirmed that COUP-TFI acts cell-autonomously in the control of TH and ZIF268 expression. These data indicate that COUP-TFI regulates TH expression in OB cells through an activity-dependent mechanism involving ZIF268 induction and strongly argue for a maintenance rather than establishment function of COUP-TFI in dopaminergic commitment. Our study reveals a previously unknown role for COUP-TFI in the adult brain as a key regulator in the control of sensory-dependent plasticity in olfactory dopaminergic neurons.


Assuntos
Fator I de Transcrição COUP/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Bulbo Olfatório/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese , Animais , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteínas de Homeodomínio/metabolismo , Sistema Justaglomerular/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Privação Sensorial , Olfato/fisiologia , Fatores de Transcrição/metabolismo
10.
Neuropathology ; 34(6): 527-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24985408

RESUMO

It has been reported that bisphenol A (BPA), a widespread xenoestrogen employed in the production of polycarbonate plastics, affects brain development in both humans and rodents. In the present study employing mice, we examined the effects of exposure to BPA (500 µg/kg/day) during fetal and lactational periods on the development of the locus coeruleus (LC) at the age of embryonic day 18 (E18), postnatal 3 weeks (P3W), P8W and P16W. The number of tyrosine hydroxylase-immunoreactive cells (TH-IR cells) in females exposed to BPA was decreased, compared with the control females at P3W. At P8W, the number of TH-IR cells in females exposed to BPA was significantly decreased, compared with the control females, whereas the number of TH-IR cells in males exposed to BPA was significantly increased, compared with the control males, which resulted in reversed transient sexual differences in the numbers of TH-IR cells observed in the controls at P8W. However, no significant changes were demonstrated at E18 or P16W. Next, we examined the density of the fibers containing norepinephrine transporter (NET) in the anterior cingulate cortex (ACC) and prefrontal cortex, at P3W, P8W and P16W, because NET would be beneficial in identifying the targets of the LC noradrenergic neurons. There were no significant differences shown in the density of the NET-positive fibers, between the control and the groups exposed to BPA. These results suggested that BPA might disrupt the development of physiological sexual differences in the LC-noradrenergic system in mice, although further studies are necessary to clarify the underlying mechanisms.


Assuntos
Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/crescimento & desenvolvimento , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Fenóis/toxicidade , Animais , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/crescimento & desenvolvimento , Giro do Cíngulo/metabolismo , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Adv Sci (Weinh) ; 10(35): e2305042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880864

RESUMO

Microgravity is the primary factor that affects human physiology in spaceflight, particularly bone loss and disturbances of the central nervous system. However, little is known about the cellular and molecular mechanisms of these effects. Here, it is reported that in mice hindlimb unloading stimulates expression of neuropeptide Y (NPY) and tyrosine hydroxylase (TH) in the hypothalamus, resulting in bone loss and altered fat metabolism. Enhanced expression of TH and NPY in the hypothalamus occurs downstream of a reduced prostaglandin E2 (PGE2)-mediated ascending interoceptive signaling of the skeletal interoception. Sympathetic antagonist propranolol or deletion of Adrb2 in osteocytes rescue bone loss in the unloading model. Moreover, depletion of TH+ sympathetic nerves or inhibition of norepinephrine release ameliorated bone resorption. Stereotactic inhibition of NPY expression in the hypothalamic neurons reduces the food intake with altered energy expenditure with a limited effect on bone, indicating hypothalamic neuroendocrine factor NPY in the facilitation of bone formation by sympathetic TH activity. These findings suggest that reduced PGE2-mediated interoceptive signaling in response to microgravity or unloading has impacts on the skeletal and central nervous systems that are reciprocally regulated.


Assuntos
Dinoprostona , Interocepção , Humanos , Camundongos , Animais , Dinoprostona/metabolismo , Neuropeptídeo Y/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo
12.
Neurochem Int ; 171: 105629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865339

RESUMO

Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutations in the phenylalanine hydroxylase (PAH) gene, resulting in phenylalanine accumulation and impaired tyrosine production. In Tyrosinemia type 1 (TYRSN1) mutations affect fumarylacetoacetate hydrolase, leading to accumulation of toxic intermediates of tyrosine catabolism. Treatment of TYRSN1 with nitisinone results in extreme tissue levels of tyrosine. Although PKU and TYRSN1 have opposite effects on tyrosine levels, both conditions have been associated with neuro-psychiatric symptoms typically present in ADHD, possibly indicating an impaired dopamine (DA) synthesis. However, concrete in vivo data on the possible molecular basis for disrupted DA production under disease mimicking conditions have been lacking. In pursuit to uncover associated molecular mechanisms, we exposed an established, DA producing cell line (PC12) to different concentrations of phenylalanine and tyrosine in culture media. We measured the effects on viability, proteomic composition, tyrosine, DA and tyrosine hydroxylase (TH) levels and TH phosphorylation. TH catalyzes the rate-limiting step in DA synthesis. High extracellular levels of phenylalanine depleted cells of intracellular tyrosine and DA. Compared to physiological levels (75 µM), either low (35 µM) or high concentrations of tyrosine (275 or 835 µM) decreased cellular DA, TH protein, and its phosphorylation levels. Using deep proteomic analysis, we identified multiple proteins, biological processes and pathways that were altered, including enzymes and transporters involved in amino acid metabolism. Using this information and published data, we developed a mathematical model to predict how extracellular levels of aromatic amino acids can affect the cellular synthesis of DA via different mechanisms. Together, these data provide new information about the normal regulation of neurotransmitter synthesis and how this may be altered in neurometabolic disorders, such as PKU and TYRSN1, with implications for the treatment of cognitive symptoms resulting from comorbid neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Fenilcetonúrias , Tirosinemias , Ratos , Animais , Dopamina/metabolismo , Tirosina/metabolismo , Fenilalanina , Células PC12 , Proteômica , Fenilcetonúrias/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Brain Res ; 1777: 147754, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34929182

RESUMO

A long-standing observation is that the micturition reflex receives supraspinal descending control. Although one supraspinal nucleus (Barrington's nucleus) is identified as the pontine micturition center, it remains largely unknown whether and how other supraspinal tracts are involved in micturition control. Here, we focused on the role of lumbosacral projecting neurons located in the Locus Coeruleus (LC) in modulating micturition, since previous studies indicated that the LC is involved in controlling bladder contraction. First, by performing an AAV mediated retrograde labeling using a TH-iCre mouse line, we demonstrated specific targeting of LC noradrenergic neurons innervating the lumbosacral spinal cord with high efficiency. Next, by lumbosacral injection of a retro-AAV carrying Cre-dependent human diphtheria toxin receptors (DTR), we achieved specific ablation of LC NA+ neurons with lumbosacral projections upon the administration of diphtheria toxin. Our results showed that specific ablation of theseneurons led to overflow incontinence leaks and lower void efficiency. Mechanistically, by performing the urodynamics analysis, we showed that ablation of lumbosacral innervating NAneurons resulted in detrusor-sphincter dyssynergia. Taken together, our study provided novel insights into the underlying mechanisms of supraspinal control of micturition reflex and thus shed light on developing novel treatment to improve micturition control in patients with SCI or lower urinary tract symptoms.


Assuntos
Neurônios Adrenérgicos/fisiologia , Medula Espinal/fisiologia , Bexiga Urinária/inervação , Micção/fisiologia , Animais , Locus Cerúleo/fisiologia , Camundongos , Ponte/fisiologia , Reflexo/fisiologia
14.
Ann Anat ; 239: 151726, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33798691

RESUMO

Insulin receptor substrate (Irs) belongs to a family of proteins that mediate the intracellular signaling of insulin and IGF-1. Insulin receptor substrate 2 (Irs2) is necessary for retinal function, since its failure in Irs2-deficient mice in hyperglycemic situation promotes photoreceptor degeneration and visual dysfunction, like in diabetic retinopathy. The expression of P450 aromatase, which catalyzes androgen aromatization to form 17ß-estradiol, increases in some neurodegenerative diseases thus promoting the local synthesis of neuroestrogens that exert relevant neuroprotective functions. Aromatase is also expressed in neurons and glial cells of the central nervous system (CNS), including the retina. To further understand the role of Irs2 at the retinal level, we performed an immunocytochemical study in adult normoglycemic Irs2-deficient mice. For this aim, the retinal immunoexpression of neuromodulators, such as aromatase, glutamine synthetase (GS), and tyrosine hydroxylase (TH) was analyzed, joint to a morphometric and planimetric study of the retinal layers. Comparing with wild-type (WT) control mice, the Irs2-knockout (Irs2-KO) animals showed a significant increase in the immunopositivity to aromatase in almost all of the retinal layers. Besides, Irs2-KO mice exhibited a decreased immunopositive reaction for GS and TH, in Müller and amacrine cells, respectively; morphological variations were also found in these retinal cell types. Furthermore, the retina of Irs2-KO mice displayed alterations in the structural organization, and a generalized decrease in the retinal thickness was observed in each of the layers, except for the inner nuclear layer. Our findings suggest that the absence of Irs2 induces retinal neurodegenerative changes in Müller and amacrine cells that are unrelated to hyperglycemia. Accordingly, in the Irs2-KO mice, the increased retinal immunocytochemical reactivity of aromatase could be associated with an attempt to repair such neural retina injuries by promoting local neuroprotective mediators.


Assuntos
Aromatase , Proteínas Substratos do Receptor de Insulina , Retina , Células Amácrinas/metabolismo , Animais , Aromatase/genética , Células Ependimogliais , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/metabolismo
15.
Life (Basel) ; 12(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35629308

RESUMO

Treatment with levodopa (L-dopa) in Parkinson's disease (PD) leads to involuntary movements termed L-dopa-induced dyskinesia (LID). There are contradictory data about the influence of hormone therapy in female PD patients with LID and of 17-ß-estradiol (E2) on animal correlates of LID-abnormal involuntary movements (AIMs). Our aim was to characterize the influence of E2 on motor impairment and AIMs in ovariectomized 6-hydroxydopamine (6-OHDA) rat model of PD. Half of the rats received empty and the other half implants filled with E2. Following the 6-OHDA surgery, the rats received daily treatment with either L-dopa or saline for 16 days. They were assessed for AIMs, contralateral rotations, and FAS. In the L-dopa-treated rats, E2 intensified and prolonged AIMs and contralateral rotations. On the other hand, it had no effect on motor impairment. Postmortem tyrosine hydroxylase immunostaining revealed an almost complete unilateral lesion of nigrostriatal dopaminergic neurons. E2 partially prevented the upregulation of striatal ΔFosB caused by dopamine depletion. L-dopa potentiated the upregulation of ΔFosB within the dopamine-depleted striatum and this effect was further enhanced by E2. We speculate that the potentiating effects of E2 on AIMs and on contralateral rotations could be explained by the molecular adaptations within the striatal medium spiny neurons of the direct and indirect striatofugal pathways.

16.
J Mol Neurosci ; 71(7): 1467-1472, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33447901

RESUMO

Nigrostriatal pathway disturbance is one of the major pathogenic factors in Alzheimer's disease (AD). Dopaminergic neuron dysfunction results in bradykinesia and akinesia (inability to initiate movement), indicating a significant risk factor for substantia nigra pars compacta lesions. Furthermore, the nicotinamide adenine dinucleotide (NAD+) is associated with Aß toxicity decline in AD therapy. Nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) is an essential enzyme that preserves normal neuronal function and protects neurons from insult. This study aimed to investigate the potential therapeutic effects of Nmnat1 and its underlying mechanisms in a triple-transgenic mouse model of AD (3xTgAD). Results showed that Nmnat1 improved the substantial behavioral measures of cognitive impairments compared with the 3xTgAD control. Additionally, Nmnat1 overexpression significantly increased tyrosine hydroxylase-positive neurons and anti-apoptotic protein Bcl2 and caspase-3 expression levels in 3xTgAD mice. Nmnat1 also effectively controlled SOD1 activation. In conclusion, Nmnat1 substantially decreases multiple AD-associated pathological characteristics at least partially by the increase of caspase-3 activation.


Assuntos
Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/fisiologia , Animais , Caspase 3/fisiologia , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Ativação Enzimática , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Teste de Campo Aberto , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Distribuição Aleatória , Proteínas Recombinantes/metabolismo , Substância Negra/metabolismo , Superóxido Dismutase-1/biossíntese , Superóxido Dismutase-1/genética , Tirosina 3-Mono-Oxigenase/biossíntese , Tirosina 3-Mono-Oxigenase/genética , Regulação para Cima , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/genética
17.
Antioxidants (Basel) ; 10(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467745

RESUMO

Existing therapies for Parkinson's disease (PD) are only symptomatic. As erythropoietin (EPO) is emerging for its benefits in neurodegenerative diseases, here, we test the protective effect driven by EPO in in vitro (SH-SY5Y cells challenged by MPP+) and in vivo (C57BL/6J mice administered with MPTP) PD models. EPO restores cell viability in both protective and restorative layouts, enhancing the dopaminergic recovery. Specifically, EPO rescues the PD-induced damage to mitochondria, as shown by transmission electron microscopy, Mitotracker assay and PINK1 expression. Moreover, EPO promotes a rescue of mitochondrial respiration while markedly enhancing the glycolytic rate, as shown by the augmented extracellular acidification rate, contributing to elevated ATP levels in MPP+-challenged cells. In PD mice, EPO intrastriatal infusion markedly improves the outcome of behavioral tests. This is associated with the rescue of dopaminergic markers and decreased neuroinflammation. This study demonstrates cellular and functional recovery following EPO treatment, likely mediated by the 37 Kda isoform of the EPO-receptor. We report for the first time, that EPO-neuroprotection is exerted through restoring ATP levels by accelerating the glycolytic rate. In conclusion, the redox imbalance and neuroinflammation associated with PD may be successfully treated by EPO.

18.
Front Endocrinol (Lausanne) ; 12: 705267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220725

RESUMO

Emerging evidence identifies a potent role for aerobic exercise to modulate activity of neurons involved in regulating appetite; however, these studies produce conflicting results. These discrepancies may be, in part, due to methodological differences, including differences in exercise intensity and pre-exercise energy status. Consequently, the current study utilized a translational, well-controlled, within-subject, treadmill exercise protocol to investigate the differential effects of energy status and exercise intensity on post-exercise feeding behavior and appetite-controlling neurons in the hypothalamus. Mature, untrained male mice were exposed to acute sedentary, low (10m/min), moderate (14m/min), and high (18m/min) intensity treadmill exercise in a randomized crossover design. Fed and 10-hour-fasted mice were used, and food intake was monitored 48h. post-exercise. Immunohistochemical detection of cFOS was performed 1-hour post-exercise to determine changes in hypothalamic NPY/AgRP, POMC, tyrosine hydroxylase, and SIM1-expressing neuron activity concurrent with changes in food intake. Additionally, stains for pSTAT3tyr705 and pERKthr202/tyr204 were performed to detect exercise-mediated changes in intracellular signaling. Results demonstrated that fasted high intensity exercise suppressed food intake compared to sedentary trials, which was concurrent with increased anorexigenic POMC neuron activity. Conversely, fed mice experienced augmented post-exercise food intake, with no effects on POMC neuron activity. Regardless of pre-exercise energy status, tyrosine hydroxylase and SIM1 neuron activity in the paraventricular nucleus was elevated, as well as NPY/AgRP neuron activity in the arcuate nucleus. Notably, these neuronal changes were independent from changes in pSTAT3tyr705 and pERKthr202/tyr204 signaling. Overall, these results suggest fasted high intensity exercise may be beneficial for suppressing food intake, possibly due to hypothalamic POMC neuron excitation. Furthermore, this study identifies a novel role for pre-exercise energy status to differentially modify post-exercise feeding behavior and hypothalamic neuron activity, which may explain the inconsistent results from studies investigating exercise as a weight loss intervention.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Metabolismo Energético , Comportamento Alimentar , Neurônios/fisiologia , Condicionamento Físico Animal , Pró-Opiomelanocortina/metabolismo , Animais , Hipotálamo/fisiologia , Masculino , Camundongos , Transdução de Sinais
19.
IBRO Neurosci Rep ; 10: 96-103, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33842916

RESUMO

BACKGROUND: Subthalamic nucleus (STN) neurons undergo changes in their pattern of activity and morphology during the clinical course of Parkinson's disease (PD). Striatal dopamine depletion and hyperactivity of neurons in the parafascicular nucleus (Pf) of the intralaminar thalamus are predicted to contribute to the STN changes. OBJECTIVE: This study investigated possible morphological and neurochemical changes in STN neurons in a rat model of unilateral, nigral dopamine neuron loss, in relation to previously documented alterations in Pf neurons. METHODS: Male Sprague-Dawley rats received a unilateral injection of 6-hydroxydopamine (6-OHDA) into the substantia nigra pars compacta (SNpc). Rats were randomly divided into two groups (6/group) for study at 1 and 5 months by post-treatment. The extent of SNpc dopamine neuron damage was assessed in an amphetamine-induced rotation test and postmortem assessment of tyrosine hydroxylase mRNA levels using in situ hybridization histochemistry. Neural cross-sectional measurements and assessment of vesicular glutamate transporter-2 (vGlut2) mRNA levels were performed to measure the impact on neurons in the STN. RESULTS: A unilateral SNpc dopaminergic neuron lesion significantly decreased the cross-sectional area of STN neurons ipsilateral to the lesion, at 1 month (P < 0.05) and 5 months (P < 0.01) post-lesion, while bilateral vGlut2 mRNA levels in STN neurons were unaltered. CONCLUSIONS: Decreased size of STN neurons in the presence of sustained vGlut2 mRNA levels following a unilateral SNpc 6-OHDA lesion, indicate altered STN physiology. This study presents further details of changes within the STN, coincident with observed alterations in Pf neurons and behaviour. DATA AVAILABILITY: The data associated with the findings of this study are available from the corresponding author upon request.

20.
Anim Cells Syst (Seoul) ; 24(4): 205-213, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-33029297

RESUMO

Acer tegmentosum (ATM) has antioxidant and anti-adipogenic activity. However, few studies have investigated the pharmacological activity or mechanism of ATM as an antidepressant agent. We assessed the antidepressant effect of ATM in modulating menopausal depressive symptoms and its mechanisms in ovariectomized (OVX) and repeatedly stressed (RS) female rats. The female rats were randomly divided into four groups: (1) naïve normal (normal) group, (2) OVX + repeated stress + saline-treated (control) group, (3) OVX + repeated stress + ATM (100 mg•kg-1)-treated (ATM100) group and (4) OVX + repeated stress + ATM (400 mg•kg-1)-treated (ATM400) group. We performed a battery of tests, such as the forced swimming test (FST), the sucrose intake test, and social exploration. After behavior testing, serum corticosterone levels were examined, followed by immunohistochemical determination of c-Fos, tyrosine hydroxylase (TH), and interleukin-1 beta (IL-1ß) expression in the brain. ATM administration was associated with significantly decreased immobility time in the FST. Also, the control group tended to have decreased sucrose intake and social exploration compared with the normal group. However, ATM treatment was associated with markedly increased sucrose intake and active social exploration. In the paraventricular nucleus, c-Fos and IL-1ß expression were significantly decreased in the ATM400 group compared with the control group. Compared with the control group, high-dose ATM administration was also associated with markedly decreased expression of TH-immunoreactive neurons in the locus coeruleus. The study findings demonstrated that ATM treatment effectively decreased behavioral and pathophysiological depression-like responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA