Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(1): 361-373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38376359

RESUMO

PURPOSE: The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. METHODS: Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging. RESULTS: The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 µT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved. CONCLUSION: The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.


Assuntos
Simulação por Computador , Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Próstata/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
2.
Magn Reson Med ; 92(3): 1219-1231, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38649922

RESUMO

PURPOSE: We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. METHODS: Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63-channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63-channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. RESULTS: uiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2-fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63-channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. CONCLUSIONS: Major uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2-fold at locations corresponding to the edge of the brain to 2.6-fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31- and 63-channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Razão Sinal-Ruído , Humanos , Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos
3.
Magn Reson Med ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934380

RESUMO

PURPOSE: To acquire accurate volumetric multi-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps in under 14 s whole-brain or 23 heartbeats whole-heart for parallel transmit (pTx) applications at 7 T. THEORY AND METHODS: We evaluate the combination of three recently proposed techniques. The acquisition of multi-channel transmit array B 1 + $$ {\mathrm{B}}_1^{+} $$ maps is accelerated using transmit low rank (TxLR) with absolute B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (Sandwich) acquired in a B 1 + $$ {\mathrm{B}}_1^{+} $$ time-interleaved acquisition of modes (B1TIAMO) fashion. Simulations using synthetic body images derived from Sim4Life were used to test the achievable acceleration for small scan matrices of 24 × 24. Next, we evaluated the method by retrospectively undersampling a fully sampled B 1 + $$ {\mathrm{B}}_1^{+} $$ library of nine subjects in the brain. Finally, Cartesian undersampled phantom and in vivo images were acquired in both the brain of three subjects (8Tx/32 receive [Rx]) and the heart of another three subjects (8Tx/8Rx) at 7 T. RESULTS: Simulation and in vivo results show that volumetric multi-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be acquired using acceleration factors of 4 in the body, reducing the acquisition time to within 23 heartbeats, which was previously not possible. In silico heart simulations demonstrated a RMS error to the fully sampled native resolution ground truth of 4.2° when combined in first-order circularly polarized mode (mean flip angle 66°) at an acceleration factor of 4. The 14 s 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ maps acquired in the brain have a RMS error of 1.9° to the fully sampled (mean flip angle 86°). CONCLUSION: The proposed method is demonstrated as a fast pTx calibration technique in the brain and a promising method for pTx calibration in the body.

4.
Magn Reson Med ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133639

RESUMO

PURPOSE: This study aims to map the transmit magnetic field ( B 1 + $$ {B}_1^{+} $$ ) in the human body at 7T using MR fingerprinting (MRF), with a focus on achieving high accuracy and precision across a large dynamic range, particularly at low flip angles (FAs). METHODS: A FLASH-based MRF sequence (B1-MRF) with high B 1 + $$ {B}_1^{+} $$ sensitivity was developed. Phantom and in vivo abdominal imaging were performed at 7T, and the results were compared with established reference methods, including a slow but precise preparation-based method (PEX), saturated TurboFLASH (satTFL), actual flip angle imaging (AFI) and Bloch-Siegert shift (BSS). RESULTS: The MRF signal curve was highly sensitive to B 1 + $$ {B}_1^{+} $$ , while T1 sensitivity was comparatively low. The phantom experiment showed good agreement of B 1 + $$ {B}_1^{+} $$ to PEX for a T1 range of 204-1691 ms evaluated at FAs from 0° to 70°. Compared to the references, a dynamic range increase larger than a factor of two was determined experimentally. In vivo liver scans showed a strong correlation between B1-MRF, satTFL, and RPE-AFI in a low body mass index (BMI) subject (18.1 kg/m2). However, in larger BMI subjects (≥25.5 kg/m2), inconsistencies were observed in low B 1 + $$ {B}_1^{+} $$ regions for satTFL and RPE-AFI, while B1-MRF still provided consistent results in these regions. CONCLUSION: B1-MRF provides accurate and precise B 1 + $$ {B}_1^{+} $$ maps over a wide range of FAs, surpassing the capabilities of existing methods in the FA range < 60°. Its enhanced sensitivity at low FAs is advantageous for various applications requiring precise B 1 + $$ {B}_1^{+} $$ estimates, potentially advancing the frontiers of ultra-high field (UHF) body imaging at 7T and beyond.

5.
Magn Reson Med ; 91(5): 2188-2199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38116692

RESUMO

PURPOSE: The purpose of this work was to design and build a coil for quadri-nuclear MRI of the human brain at 7 T. METHODS: We built a transmit/receive triple-tuned (45.6 MHz for 2 $$ {}^2 $$ H, 78.6 MHz for 23 $$ {}^{23} $$ Na, and 120.3 MHz for 31 $$ {}^{31} $$ P) quadrature four-rod birdcage that was geometrically interleaved with a transmit/receive four-channel dipole array (297.2 MHz for 1 $$ {}^1 $$ H). The birdcage rods contained passive, two-pole resonant circuits that emulated capacitors required for single-tuning at three frequencies. The birdcage assembly also included triple-tuned matching networks, baluns, and transmit/receive switches. We assessed the performance of the coil with quality factor (Q) and signal-to-noise ratio (SNR) measurements, and performed in vivo multinuclear MRI and MR spectroscopic imaging (MRSI). RESULTS: Q measurements showed that the triple-tuned birdcage efficiency was within 33% of that of single-tuned baseline birdcages at all three frequencies. The quadri-tuned coil SNR was 78%, 59%, 44%, and 48% lower than that of single or dual-tuned reference coils for 1 $$ {}^1 $$ H, 2 $$ {}^2 $$ H, 23 $$ {}^{23} $$ Na, and 31 $$ {}^{31} $$ P, respectively. Quadri-nuclear MRI and MRSI was demonstrated in brain in vivo in about 30 min. CONCLUSION: While the SNR of the quadruple tuned coil was significantly lower than dual- and single-tuned reference coils, it represents a step toward truly simultaneous quadri-nuclear measurements.


Assuntos
Imageamento por Ressonância Magnética , Pirimidinas , Sódio , Estrobilurinas , Humanos , Imagens de Fantasmas , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Sódio/química
6.
NMR Biomed ; : e5180, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775032

RESUMO

Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view. Free-breathing 3D gradient-recalled echo (GRE) water-excited radial stack-of-stars data were acquired in seven healthy volunteers (five males/two females, body mass index: 19.6-24.8 kg/m2) at 7 T using an eight-channel transceive array coil. Two volunteers were also examined at 3 T. In each volunteer, the liver and kidney regions were scanned in two separate acquisitions. To homogenize signal excitation, the time-interleaved acquisition of modes (TIAMO) method was used with personalized pairs of B1 shims, based on a 23-s Cartesian fast low angle shot (FLASH) acquisition. Utilizing free-induction decay navigator signals, respiratory-gated images were reconstructed at a spatial resolution of 0.8 × 0.8 × 1.0 mm3. Two experienced radiologists rated the image quality and the impact of B1 inhomogeneity and motion-related artifacts on multipoint scales. The images of all volunteers showcased effective water excitation and were accurately corrected for respiratory motion. The impact of B1 inhomogeneity on image quality was minimal, underscoring the efficacy of the multitransmit TIAMO shim. The high spatial resolution allowed excellent depiction of small structures such as the adrenal glands, the proximal ureter, the diaphragm, and small blood vessels, although some streaking artifacts persisted in liver image data. In direct comparisons with 3 T performed for two volunteers, 7-T acquisitions demonstrated increases in signal-to-noise ratio of 77% and 58%. Overall, this work demonstrates the feasibility of free-breathing MRI in the upper abdomen at submillimeter spatial resolution at a magnetic field strength of 7 T.

7.
NMR Biomed ; : e5170, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742727

RESUMO

Toll-like receptor 2 (TLR2) belongs to the TLR protein family that plays an important role in the immune and inflammation response system. While TLR2 is predominantly expressed in immune cells, its expression has also been detected in the brain, specifically in microglia and astrocytes. Recent studies indicate that genomic deletion of TLR2 can result in impaired neurobehavioural function. It is currently not clear if the genomic deletion of TLR2 leads to any alterations in the microstructural features of the brain. In the current study, we noninvasively assess microstructural changes in the brain of TLR2-deficient (tlr2-/-) zebrafish using state-of-the art magnetic resonance imaging (MRI) methods at ultrahigh magnetic field strength (17.6 T). A significant increase in cortical thickness and an overall trend towards increased brain volumes were observed in young tlr2-/- zebrafish. An elevated T2 relaxation time and significantly reduced apparent diffusion coefficient (ADC) unveil brain-wide microstructural alterations, potentially indicative of cytotoxic oedema and astrogliosis in the tlr2-/- zebrafish. Multicomponent analysis of the ADC diffusivity signal by the phasor approach shows an increase in the slow ADC component associated with restricted diffusion. Diffusion tensor imaging and diffusion kurtosis imaging analysis revealed diminished diffusivity and enhanced kurtosis in various white matter tracks in tlr2-/- compared with control zebrafish, identifying the microstructural underpinnings associated with compromised white matter integrity and axonal degeneration. Taken together, our findings demonstrate that the genomic deletion of TLR2 results in severe alterations to the microstructural features of the zebrafish brain. This study also highlights the potential of ultrahigh field diffusion MRI techniques in discerning exceptionally fine microstructural details within the small zebrafish brain, offering potential for investigating microstructural changes in zebrafish models of various brain diseases.

8.
ArXiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106453

RESUMO

Higher frequencies and shorter wavelengths present significant design issues at ultra-high fields, making multi-channel array setup a critical component for ultra-high field MR imaging. The requirement for multi-channel arrays, as well as ongoing efforts to increase the number of channels in an array, are always limited by the major issue known as inter-element coupling. This coupling affects the current and field distribution, noise correlation between channels, and frequency of array elements, lowering imaging quality and performance. To realize the full potential of UHF MRI, we must ensure that the coupling between array elements is kept to a minimum. High-impedance coils allow array systems to completely realize their potential by providing optimal isolation while requiring minimal design modifications. These minor design changes, which demand the use of low capacitance on the conventional loop to induce elevated impedance, result in a significant safety hazard that cannot be overlooked. High electric fields are formed across these low capacitance lumped elements, which may result in higher SAR values in the imaging subject, depositing more power and, ultimately, providing a greater risk of tissue heating-related injury to the human sample. We propose an innovative method of utilizing high-dielectric material to effectively reduce electric fields and SAR values in the imaging sample while preserving the B1 efficiency and inter-element decoupling between the array elements to address this important safety concern with minimal changes to the existing array design comprising high-impedance coils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA