Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19261-19270, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588397

RESUMO

The remarkable properties of two-dimensional (2D) materials have led to significant advancements in photodetection and optoelectronics research. Currently, there are many successful methods that are employed to improve the responsivity of photodetectors, but the limited spectral range of the device remains a limitation. This work demonstrates the development of a mixed-dimensional (2D/0D) hybrid photodetector device fabricated using chemical vapor deposition (CVD)-grown monolayer ReS2 and solution-processed MoS2 quantum dots (QDs). The mixed dimensionality of 2D (ReS2) and zero-dimensional (0D) MoS2 QDs assist in improving the spectral range of the device [ultraviolet (360 nm) to near-infrared (780 nm)]. Further, due to the work function difference between ReS2 and MoS2 QDs, the built-in electric field across the mixed-dimensional interface promotes effective charge separation and migration, resulting in improved responsivities of the device. The calculated responsivities of the fabricated photodetector are 5.4 × 102, 3.3 × 102, and 2.6 × 102 A/W when subjected to visible, UV, and NIR light illumination, which is remarkable when compared to the existing reports on broadband photodetection. The mixed-dimensionality heterostructure coupled with contact engineering paves the way for highly responsive broadband photodetectors for potential applications in security, healthcare, etc.

2.
ACS Appl Mater Interfaces ; 13(6): 7498-7509, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33533254

RESUMO

Organic phototransistors (OPTs) have attracted enormous attention because of their promising applications in sensing, communication, and imaging. Currently, most OPTs reported utilize field-effect transistors (FETs) with relative long channel length which usually has undesired amplification because of their inherent low transconductance originated from their low channel capacitance, limiting the further improvement of performance. Herein, a vertical channel hybrid electrochemical phototransistor with a nanoscale channel and large transconductance (VECPT) is invented for the first time to achieve ultrahigh photoresponsivity along with a fast response speed. Benefiting from the nanoscale channel length and large transconductance, the photo-generated carriers in channel can be efficiently dissociated, transported, and amplified into the enlarged photocurrent output. Therefore, the devices deliver substantially improved optoelectronic performances with a photoresponsivity as high as ≈2.99 × 107 A/W, detectivity of ≈1.49 × 1013 Jones, and fast-speed response of ≈73 µs under a low voltage of 1 V, which are superior to those of the reported OPTs based on FETs. Moreover, the in situ Kelvin probe microscopy is performed to characterize the surface potential of device systems for better elucidating the photosensing mechanism. Furthermore, taking advantage of its excellent optoelectronic performance, an ultraviolet light monitoring system is constructed by integrating VECPT with a light-emitting diode, which also shows the real-time, high-sensitive, and controllable photoresponse threshold properties. All these results demonstrate the great potential of these electrochemical phototransistors and provide valuable insights into the design of the nanoscale channel length device system for high-performance photodetection.

3.
ACS Nano ; 11(1): 430-437, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28005326

RESUMO

Graphene's unique electronic and optical properties have made it an attractive material for developing ultrafast short-wave infrared (SWIR) photodetectors. However, the performance of graphene SWIR photodetectors has been limited by the low optical absorption of graphene as well as the ultrashort lifetime of photoinduced carriers. Here, we present two mechanisms to overcome these two shortages and demonstrate a graphene-based SWIR photodetector with high responsivity and fast photoresponse. In particular, a vertical built-in field is employed in the graphene channel for trapping the photoinduced electrons and leaving holes in graphene, which results in prolonged photoinduced carrier lifetime. On the other hand, plasmonic effects were employed to realize photon trapping and enhance the light absorption of graphene. Thanks to the above two mechanisms, the responsivity of this proposed SWIR photodetector is up to a record of 83 A/W at a wavelength of 1.55 µm with a fast rising time of less than 600 ns. This device design concept addresses key challenges for high-performance graphene SWIR photodetectors and is promising for the development of mid/far-infrared optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA