Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Anal Bioanal Chem ; 413(27): 6769-6776, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34120197

RESUMO

Amperometry with ultramicroelectrodes is nowadays a routine technique to investigate neurotransmitter secretion by vesicular exocytosis at the single-cell level. This electroanalytical tool allows one to understand many aspects of the vesicular release in terms of mechanisms. However, the electrochemical detection relies on the oxidation of released neurotransmitters that produce 2H+ and thus the possible acidification of the cell-electrode cleft. In a previous work, we considered a model involving the H+ diffusion or/and its reaction with buffer species. In this article, we report a more general model which takes into account the ability of buffer species to move and to be regenerated within the cell-electrode cleft. As a consequence, the pH within the cleft is still equal to its physiological value regardless of the electrochemical detection of the vesicular release for usual exocytotic cell frequencies. This confirms that amperometry at the single-cell level is a very robust technique for investigating vesicular exocytosis.


Assuntos
Técnicas Eletroquímicas/métodos , Exocitose/fisiologia , Modelos Biológicos , Soluções Tampão , Membrana Celular/química , Simulação por Computador , Difusão , Técnicas Eletroquímicas/instrumentação , Concentração de Íons de Hidrogênio , Prótons
2.
Angew Chem Int Ed Engl ; 59(41): 18244-18248, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32652831

RESUMO

We report a new mass spectrometric method for detecting electrogenerated intermediates. This approach is based on simultaneous activation of electrospray ionization and redox reaction on a wireless bipolar ultramicroelectrode, which is fabricated in the tip of a quartz nanopipette. The hollow structure of the ultramicroelectrode permits rapid transferring the transient species from electrode-electrolyte interfaces into the gas phase for mass spectrometric identification on the time scale of microseconds. The long-sought fleeting intermediates including TPrA.+ , whose lifetime in solution is only 200 µs, and catecholamine o-semiquinone radicals, the second-order rate constant of which is typically 109 m-1 s-1 , were successfully identified, helping clarify the previously hidden reaction pathways. Accordingly, our method may have wide applicability in exploring the dynamics of many electrochemical reactions, especially their ultrafast initial steps.

3.
Anal Bioanal Chem ; 411(19): 4365-4374, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31011787

RESUMO

Levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cells and cell redox balance are of great interest in live cells as they are correlated to several pathological and physiological conditions of living cells. ROS and RNS detection is limited due to their spatially restricted abundance: they are usually located in sub-cellular areas (e.g., in specific organelles) at low concentration. In this work, we will review and highlight the electrochemical approach to this bio-analytical issue. Combining electrochemical methods and miniaturization strategies, specific, highly sensitive, time, and spatially resolved measurements of cellular oxidative stress and redox balance analysis are possible. Graphical abstract In this work, we highlight and review the use of electrochemistry for the highly spatial and temporal resolved detection of ROS/RNS levels and of redox balance in living cells. These levels are central in several pathological and physiological conditions and the electrochemical approach is a vibrant bio-analytical trend in this field.


Assuntos
Técnicas Eletroquímicas/métodos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Técnicas Eletroquímicas/instrumentação , Humanos , Camundongos , Miniaturização , Oxirredução
4.
Biotechnol Lett ; 39(6): 849-855, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28238062

RESUMO

OBJECTIVE: To fabricate a novel microbial photobioelectrochemical cell using silicon microfabrication techniques. RESULTS: High-density photosynthetic cells were immobilized in a microfluidic chamber, and ultra-microelectrodes in a microtip array were inserted into the cytosolic space of the cells to directly harvest photosynthetic electrons. In this way, the microbial photobioelectrochemical cell operated without the aid of electron mediators. Both short circuit current and open circuit voltage of the microbial photobioelectrochemical cell responded to light stimuli, and recorded as high as 250 pA and 45 mV, respectively. CONCLUSION: A microbial photobioelectrochemical cell was fabricated with potential use in next-generation photosynthesis-based solar cells and sensors.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Fotobiorreatores , Células Imobilizadas , Chlorella/citologia , Chlorella/metabolismo , Técnicas Eletroquímicas , Desenho de Equipamento , Microeletrodos
5.
Chemphyschem ; 17(11): 1637-41, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-26955784

RESUMO

Single Pt nanoparticle (NP) collisions on an electrode surface were detected by using an electrocatalytic amplification method with a Pd ultramicroelectrode (UME). Pd is not a preferred material for UMEs for the detection of single Pt NP collisions, because Pd shows similar electrocatalytic activity compared with Pt for hydrazine oxidation, thus resulting in a high background current level. However, a Pt NP colliding on the Pd UME shows greatly enhanced activity compared with a Pt NP on an inert UME, such as a Au UME, which is usually used for the detection of single Pt NP collisions. The use of an electroactive UME material instead of an inert one facilitated the study of single-NP activity on the various solid supports, which is important in many NP applications.

6.
ACS Sens ; 8(5): 2011-2020, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37083364

RESUMO

Single-particle collision electrochemistry (SPCE) has shown great promise in biosensing applications due to its high sensitivity, high flux, and fast response. However, a low effective collision frequency and a large number of interfering substances in complex matrices limit its broad application in clinical samples. Herein, a novel and universal SPCE biosensor was proposed to realize sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on the collision and oxidation of single silver nanoparticles (Ag NPs) on polysulfide-functionalized gold ultramicroelectrodes (Ps-Au UMEs). Taking advantage of the strong interaction of the Ag-S bond, collision and oxidation of Ag NPs on the Ps-Au UME surface could be greatly promoted to generate enhanced Faraday currents. Compared with bare Au UMEs, the collision frequency of Ps-Au UMEs was increased by 15-fold, which vastly improved the detection sensitivity and practicability of SPCE in biosensing. By combining magnetic separation, liposome encapsulation release, and DNAzyme-assisted signal amplification, the SPCE biosensor provided a dynamic range of 5 orders of magnitude for spike proteins with a detection limit of 6.78 fg/mL and a detection limit of 21 TCID50/mL for SARS-CoV-2. Furthermore, SARS-CoV-2 detection in nasopharyngeal swab samples of infected patients was successfully conducted, indicating the potential of the SPCE biosensor for use in clinically relevant diagnosis.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Microeletrodos , Nanopartículas Metálicas/química , COVID-19/diagnóstico , Eletroquímica , Prata
7.
Adv Mater ; 35(15): e2208630, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739482

RESUMO

Aqueous zinc-metal batteries have attracted extensive attention due to their outstanding merits of high safety and low cost. However, the intrinsic thermodynamic instability of zinc in aqueous electrolyte inevitably results in hydrogen evolution, and the consequent generation of OH- at the interface will dramatically exacerbate the formation of dead zinc and dendrites. Herein, a dynamically interfacial pH-buffering strategy implemented by N-methylimidazole (NMI) additive is proposed to remove the detrimental OH- at zinc/electrolyte interface in real-time, thus eliminating the accumulation of by-products fundamentally. Electrochemical quartz crystal microbalance and molecular dynamics simulation results reveal the existence of an interfacial absorption layer assembled by NMI and protonated NMI (NMIH+ ), which acts as an ion pump for replenishing the interface with protons constantly. Moreover, an in situ interfacial pH detection method with micro-sized spatial resolution based on the ultra-microelectrode technology is developed to probe the pH evolution in diffusion layer, confirming the stabilized interfacial chemical environment in NMI-containing electrolyte. Accordingly, with the existence of NMI, an excellent cumulative plating capacity of 4.2 Ah cm-2 and ultrahigh Coulombic efficiency of 99.74% are realized for zinc electrodes. Meanwhile, the NMI/NMIH+ buffer additive can accelerate the dissolution/deposition process of MnO2 /Mn2+ on the cathode, leading to enhanced cycling capacity.

8.
HardwareX ; 11: e00290, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35509918

RESUMO

This work presents 4 open source potentiostat solutions for performing accurate measurements in cyclic voltammetry and square wave voltammetry at a low price. A very simple and easy to reproduce analogic board (c.a. 10 €) was driven either by a Teensy card from the company PJRC under an Arduino/Python software solution (39 €) or by an Analog Discovery 2 device from Digilent (less than 300 €). A smartphone Bluetooth Android interface was also created to circumvent the use of a computer. We demonstrated that our scheme is suitable for measurements in classical electrochemical conditions but also to carry out experiments with ultramicroelectrodes. We could thus reach a noise resolution of less than 1 pA. Scan rates of 8000 Vs-1 with ohmic drop compensation were also achieved. The device is suitable for teaching purposes but also for experiments in a participative science context on the ground, or countries with lower financial possibilities.

9.
Front Neurosci ; 14: 405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508562

RESUMO

The technology for producing microelectrode arrays (MEAs) has been developing since the 1970s and extracellular electrophysiological recordings have become well established in neuroscience, drug screening and cardiology. MEAs allow monitoring of long-term spiking activity of large ensembles of excitable cells noninvasively with high temporal resolution and mapping its spatial features. However, their inability to register subthreshold potentials, such as intrinsic membrane oscillations and synaptic potentials, has inspired a number of laboratories to search for alternatives to bypass the restrictions and/or increase the sensitivity of microelectrodes. In this study, we present the fabrication and in vitro experimental validation of arrays of PEDOT:PSS-coated 3D ultramicroelectrodes, with the best-reported combination of small size and low electrochemical impedance. We observed that this type of microelectrode does not alter neuronal network biological properties, improves the signal quality of extracellular recordings and exhibits higher selectivity toward single unit recordings. With fabrication processes simpler than those reported in the literature for similar electrodes, our technology is a promising tool for study of neuronal networks.

10.
Talanta ; 166: 198-206, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213223

RESUMO

We have developed an anodic stripping voltammetry method that employs carbon fiber ultra-microelectrodes modified with gold nanoparticles to determine arsenic in natural waters. Gold nanoparticles were potentiostatically deposited on carbon fiber ultra-microelectrodes at -0.90V (vs SCE) for a time of 15s, to form the carbon fiber ultra-microelectrodes modified with gold nanoparticles. Cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy coupled to an X-ray microanalysis system were used to check and confirm the presence of gold nanoparticles on the carbon fiber ultra-microelectrodes. Arsenic detection parameters such as deposition potential and deposition time were optimized allowing a detection range between 5 to 60µgL-1. The developed modified electrodes allowed rapid As determination with improved analytical characteristics including better repeatability, higher selectivity, lower detection limit (0.9µgL-1) and higher sensitivity (0.0176nAµgL-1) as compared to the standard carbon electrodes. The analytical capability of the optimized method was demonstrated by determination of arsenic in certified reference materials (trace elements in water (NIST SRM 1643d)) and by comparison of results with those obtained by hydride generation atomic absorption spectrometry (HG-AAS) in the determination of the analyte in tap and well waters.


Assuntos
Arsênio/análise , Carbono/química , Eletroquímica/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/análise , Água/química , Arsênio/química , Fibra de Carbono , Concentração de Íons de Hidrogênio , Microeletrodos , Poluentes Químicos da Água/química
11.
Biosens Bioelectron ; 79: 568-73, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26749098

RESUMO

The present work was dedicated to the development of a lab-on-chip device for water toxicity analysis and more particularly herbicide detection in water. It consists in a portable system for on-site detection composed of three-electrode electrochemical microcells, integrated on a fluidic platform constructed on a glass substrate. The final goal is to yield a system that gives the possibility of conducting double, complementary detection: electrochemical and optical and therefore all materials used for the fabrication of the lab-on-chip platform were selected in order to obtain a device compatible with optical technology. The basic detection principle consisted in electrochemically monitoring disturbances in metabolic photosynthetic activities of algae induced by the presence of Diuron herbicide. Algal response, evaluated through oxygen (O2) monitoring through photosynthesis was different for each herbicide concentration in the examined sample. A concentration-dependent inhibition effect of the herbicide on photosynthesis was demonstrated. Herbicide detection was achieved through a range (blank - 1 µM Diuron herbicide solution) covering the limit of maximum acceptable concentration imposed by Canadian government (0.64 µM), using a halogen white light source for the stimulation of algal photosynthetic apparatus. Superior sensitivity results (limit of detection of around 0.1 µM) were obtained with an organic light emitting diode (OLED), having an emission spectrum adapted to algal absorption spectrum and assembled on the final system.


Assuntos
Técnicas Biossensoriais/instrumentação , Diurona/análise , Herbicidas/análise , Dispositivos Lab-On-A-Chip , Microalgas/fisiologia , Poluentes Químicos da Água/análise , Diurona/metabolismo , Técnicas Eletroquímicas/instrumentação , Herbicidas/metabolismo , Microalgas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Qualidade da Água
12.
Angew Chem Int Ed Engl ; 40(3): 563-566, 2001 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29712016

RESUMO

Areas of 80-3500 µm2 are displayed by gold single-crystal ultramicroelectrodes, which were fabricated from gold single crystals grown electrolytically in silicate gels. According to their cyclic voltammograms in 0.01 M HCl, these ultramicroelectrodes behave similarly to electrodes of more normal dimensions with the same crystallographic orientation of the surface.

13.
ChemMedChem ; 9(6): 1286-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24803138

RESUMO

Ferrocifens are an original class of ferrocifen-type breast cancer drugs. They possess anti-proliferative effects due to the association of the ferrocene moiety and the tamoxifen skeleton. In this work, fluorescence measurements indicated the production of reactive oxygen species (ROS) if hormone-dependent or -independent breast cancer cells were incubated with three hit ferrocifen compounds. Additionally, amperometry at ultramicroelectrodes was carried out to identify and quantify ROS and reactive nitrogen species (RNS) under stress conditions. Videomicroscopy was used to optimize the conditions employed for electrochemical investigations. Amperometry was then performed on two cell lines pre-incubated with each of the three ferrocifens. Interestingly, these results demonstrate that the presence of an aminoalkyl chain in the ferrocifen structure may confer a unique behavior toward both cell lines, in comparison with the two other compounds that lack this feature.


Assuntos
Compostos Ferrosos/química , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas Eletroquímicas , Eletrodos , Feminino , Compostos Ferrosos/toxicidade , Humanos , Células MCF-7 , Microscopia de Vídeo
14.
Biosens Bioelectron ; 61: 290-7, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24906088

RESUMO

An autonomous electrochemical biosensor with three electrodes integrated on the same silicon chip dedicated to the detection of herbicides in water was fabricated by means of silicon-based microfabrication technology. Platinum (Pt), platinum black (Pt Bl), tungsten/tungsten oxide (W/WO3) and iridium oxide (Pt/IrO2) working ultramicroelectrodes were developed. Ag/AgCl and Pt electrodes were used as reference and counter-integrated electrodes respectively. Physical vapor deposition (PVD) and electrodeposition were used for thin film deposition. The ultramicroelectrodes were employed for the detection of O2, H2O2 and pH related ions H3O(+)/OH(-), species taking part in photosynthetic and metabolic activities of algae. By measuring the variations in consumption-production rates of these electroactive species by algae, the quantity of herbicides present at trace level in the solution can be estimated. Fabricated ultramicroelectrodes were electrochemically characterized and calibrated. Pt Black ultramicroelectrodes exhibited the greatest sensitivity regarding O2 and H2O2 detection while Pt/IrO2 ultramicroelectrodes were more sensitive for pH measurement compared to W/WO3 ultramicroelectrodes for pH measurement. Bioassays were then conducted to detect traces of Diuron herbicide in water samples by evaluating disturbances in photosynthetic and metabolic activities of algae caused by this herbicide.


Assuntos
Técnicas Biossensoriais/instrumentação , Chlamydomonas reinhardtii/metabolismo , Diurona/análise , Técnicas Eletroquímicas/instrumentação , Herbicidas/análise , Poluentes Químicos da Água/análise , Diurona/metabolismo , Desenho de Equipamento , Herbicidas/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Limite de Detecção , Microeletrodos , Oxigênio/análise , Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo
15.
Colloids Surf B Biointerfaces ; 123: 866-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25454757

RESUMO

We report the design and fabrication of hydrogen peroxide (H2O2) sensors using heme proteins immobilized on macroelectrodes and ultramicroelectrodes (UMEs). In this sensor design, the heme centers are directly "wired" to the electrode via the use of an imidazole-terminated self-assembled monolayer. We have systematically evaluated the effect of electrode type and size on sensor performance. The limit of detection for H2O2 determined using a 10-µm gold UME is significantly lower than that obtained using a stationary macroelectrode. Our results also highlight the advantages of using UMEs for enzyme kinetics analysis; the Km determined using a 10-µm UME is similar to that obtained from a rotating disk electrode.


Assuntos
Técnicas Biossensoriais/métodos , Citocromos c/química , Eletroquímica/métodos , Eletrodos , Enzimas Imobilizadas/química , Peróxido de Hidrogênio/análise
16.
Talanta ; 116: 964-71, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24148502

RESUMO

We have developed an electroanalytical method to quantify different isomers of tocopherols in edible vegetable oils. The method uses the square wave voltammetry on a carbon fiber disk ultramicroelectrode in benzene/ethanol+0.1 mol L(-1)H2SO4. Because the oxidation peaks of these natural antioxidants show an important overlapping, we have used two chemometric tools to obtain the multivariate calibration model. One method was the multivariate curve resolution-alternating least square (MCR-ALS), which assumes a linear behavior, i.e., the total signal is the sum of individual signals of components, and another nonlinear method such as artificial neuronal networks (ANNs). From the accuracy and precision analysis between nominal and estimated concentrations by both methods, we could infer that the ANNs method was a good model to quantify tocopherols in edible oil samples. Recovery percentages were between 94% and 99%. In addition, we found a difference of 1.4-6.8% between the total content of tocopherols in edible oil samples and the vitamin E content declared by the manufacturers.


Assuntos
Algoritmos , Óleos de Plantas/química , Tocoferóis/análise , Benzeno/química , Calibragem , Técnicas Eletroquímicas , Etanol/química , Análise dos Mínimos Quadrados , Microeletrodos , Redes Neurais de Computação , Oxirredução , Estereoisomerismo , Ácidos Sulfúricos/química , Tocoferóis/classificação
17.
Beilstein J Nanotechnol ; 4: 649-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205459

RESUMO

We report here a way for improving the stability of ultramicroelectrodes (UME) based on hexacyanoferrate-modified metals for the detection of hydrogen peroxide. The most stable sensors were obtained by electrochemical deposition of six layers of hexacyanoferrates (HCF), more specifically, an alternating pattern of three layers of Prussian Blue and three layers of Ni-HCF. The microelectrodes modified with mixed layers were continuously monitored in 1 mM hydrogen peroxide and proved to be stable for more than 5 h under these conditions. The mixed layer microelectrodes exhibited a stability which is five times as high as the stability of conventional Prussian Blue-modified UMEs. The sensitivity of the mixed layer sensor was 0.32 A·M(-1)·cm(-2), and the detection limit was 10 µM. The mixed layer-based UMEs were used as sensors in scanning electrochemical microscopy (SECM) experiments for imaging of hydrogen peroxide evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA