Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.661
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 83(14): 2559-2577.e8, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37421942

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remodels the endoplasmic reticulum (ER) to form replication organelles, leading to ER stress and unfolded protein response (UPR). However, the role of specific UPR pathways in infection remains unclear. Here, we found that SARS-CoV-2 infection causes marginal activation of signaling sensor IRE1α leading to its phosphorylation, clustering in the form of dense ER-membrane rearrangements with embedded membrane openings, and XBP1 splicing. By investigating the factors regulated by IRE1α-XBP1 during SARS-CoV-2 infection, we identified stress-activated kinase NUAK2 as a novel host-dependency factor for SARS-CoV-2, HCoV-229E, and MERS-CoV entry. Reducing NUAK2 abundance or kinase activity impaired SARS-CoV-2 particle binding and internalization by decreasing cell surface levels of viral receptors and viral trafficking likely by modulating the actin cytoskeleton. IRE1α-dependent NUAK2 levels were elevated in SARS-CoV-2-infected and bystander non-infected cells, promoting viral spread by maintaining ACE2 cell surface levels and facilitating virion binding to bystander cells.


Assuntos
Proteínas Serina-Treonina Quinases , SARS-CoV-2 , Internalização do Vírus , Humanos , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/fisiologia , Resposta a Proteínas não Dobradas
2.
Trends Biochem Sci ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034215

RESUMO

Intracellular biomolecular condensates, which form via phase separation, display a highly organized ultrastructure and complex properties. Recent advances in optical imaging techniques, including super-resolution microscopy and innovative microscopic methods that leverage the intrinsic properties of the molecules observed, have transcended the limitations of conventional microscopies. These advances facilitate the exploration of condensates at finer scales and in greater detail. The deployment of these emerging but sophisticated imaging tools allows for precise observations of the multiphasic organization and physicochemical properties of these condensates, shedding light on their functions in cellular processes. In this review, we highlight recent progress in methodological innovations and their profound implications for understanding the organization and dynamics of intracellular biomolecular condensates.

3.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39051746

RESUMO

Candida albicans is the most prevalent fungal pathogen associated with candidemia. Similar to other fungi, the complex life cycle of C. albicans has been challenging to study with high-resolution microscopy due to its small size. Here, we employed ultrastructure expansion microscopy (U-ExM) to directly visualise subcellular structures at high resolution in the yeast and during its transition to hyphal growth. N-hydroxysuccinimide (NHS)-ester pan-labelling in combination with immunofluorescence via snapshots of various mitotic stages provided a comprehensive map of nucleolar and mitochondrial segregation dynamics and enabled the resolution of the inner and outer plaque of spindle pole bodies (SPBs). Analyses of microtubules (MTs) and SPBs suggest that C. albicans displays a side-by-side SPB arrangement with a short mitotic spindle and longer astral MTs (aMTs) at the pre-anaphase stage. Modifications to the established U-ExM protocol enabled the expansion of six other human fungal pathogens, revealing that the side-by-side SPB configuration is a plausibly conserved feature shared by many fungal species. We highlight the power of U-ExM to investigate subcellular organisation at high resolution and low cost in poorly studied and medically relevant microbial pathogens.


Assuntos
Hifas , Microtúbulos , Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Hifas/ultraestrutura , Hifas/crescimento & desenvolvimento , Candida albicans/ultraestrutura , Corpos Polares do Fuso/metabolismo , Corpos Polares do Fuso/ultraestrutura , Saccharomycetales/ultraestrutura , Mitocôndrias/ultraestrutura , Microscopia/métodos , Humanos
4.
Trends Biochem Sci ; 46(11): 902-917, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34244035

RESUMO

Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo
5.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36434788

RESUMO

Ultraliser is a neuroscience-specific software framework capable of creating accurate and biologically realistic 3D models of complex neuroscientific structures at intracellular (e.g. mitochondria and endoplasmic reticula), cellular (e.g. neurons and glia) and even multicellular scales of resolution (e.g. cerebral vasculature and minicolumns). Resulting models are exported as triangulated surface meshes and annotated volumes for multiple applications in in silico neuroscience, allowing scalable supercomputer simulations that can unravel intricate cellular structure-function relationships. Ultraliser implements a high-performance and unconditionally robust voxelization engine adapted to create optimized watertight surface meshes and annotated voxel grids from arbitrary non-watertight triangular soups, digitized morphological skeletons or binary volumetric masks. The framework represents a major leap forward in simulation-based neuroscience, making it possible to employ high-resolution 3D structural models for quantification of surface areas and volumes, which are of the utmost importance for cellular and system simulations. The power of Ultraliser is demonstrated with several use cases in which hundreds of models are created for potential application in diverse types of simulations. Ultraliser is publicly released under the GNU GPL3 license on GitHub (BlueBrain/Ultraliser). SIGNIFICANCE: There is crystal clear evidence on the impact of cell shape on its signaling mechanisms. Structural models can therefore be insightful to realize the function; the more realistic the structure can be, the further we get insights into the function. Creating realistic structural models from existing ones is challenging, particularly when needed for detailed subcellular simulations. We present Ultraliser, a neuroscience-dedicated framework capable of building these structural models with realistic and detailed cellular geometries that can be used for simulations.


Assuntos
Neurônios , Software , Simulação por Computador
6.
Proc Natl Acad Sci U S A ; 119(48): e2209441119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409887

RESUMO

Skeletal muscle force production is increased at longer compared to shorter muscle lengths because of length-dependent priming of thick filament proteins in the contractile unit before contraction. Using small-angle X-ray diffraction in combination with a mouse model that specifically cleaves the stretch-sensitive titin protein, we found that titin cleavage diminished the length-dependent priming of the thick filament. Strikingly, a titin-sensitive, length-dependent priming was also present in thin filaments, which seems only possible via bridge proteins between thick and thin filaments in resting muscle, potentially myosin-binding protein C. We further show that these bridges can be forcibly ruptured via high-speed stretches. Our results advance a paradigm shift to the fundamental regulation of length-dependent priming, with titin as the key driver.


Assuntos
Citoesqueleto de Actina , Sarcômeros , Camundongos , Animais , Conectina/metabolismo , Sarcômeros/metabolismo , Citoesqueleto de Actina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Proteínas Quinases/metabolismo
7.
Genomics ; 116(4): 110857, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38729453

RESUMO

BACKGROUND: Yaks have unique adaptive mechanisms to the hypoxic environment, in which the kidney plays an important role. The aim of this study was to explore the histological changes of yak kidney at different altitudes and the metabolites and genes associated with adaptation to the hypoxic environment. METHODS: We analyzed the tissue structure and transcriptomic metabolomic data of yak kidney tissue at two altitudes, 2600 and 4400 m. We compared and identified the morphological adaptations of the kidney and the metabolites and genes associated with hypoxia adaptation in yaks. Changes in renal morphological adaptations, differential metabolites and genes were compared and identified, combining the two in a joint analysis. RESULTS: High-altitude yak kidneys showed significant adaptive changes: increased mitochondria, increased glomerular thylakoid area, and decreased localized ribosomes. Transcriptomics and metabolomics identified 69 DAMs (Differential metabolites) and 594 DEGs (differential genes). Functional enrichment analysis showed that the DAMs were associated with protein digestion and absorption, ABC transporter, and MTOR signaling pathway; the DEGs were significantly enriched in Cholesterol metabolism and P53 signaling pathway. The joint analysis indicated that metabolites such as lysine and arginine, as well as key genes such as ABCB5 and COL1A2, were particularly affected under hypoxic conditions, whereas changes in mitochondria in the tissue structure may be related to the expression of MFN1 and OPA1, and changes in glomerular thylakoid membranes are related to VEGFA and TGFB3. CONCLUSION: The kidney regulates metabolites and gene expression related to hormone synthesis, protein metabolism, and angiogenesis by adjusting the mitochondrial and glomerular thylakoid membrane structure to support the survival of yaks in high-altitude environments.


Assuntos
Altitude , Rim , Transcriptoma , Animais , Bovinos , Rim/metabolismo , Hipóxia/metabolismo , Hipóxia/genética , Adaptação Fisiológica , Mitocôndrias/metabolismo , Mitocôndrias/genética
8.
Am J Physiol Cell Physiol ; 327(2): C462-C476, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912736

RESUMO

Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile, and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. ß-Cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in ß-cells. Here for the first time, we assessed the ß-cell autonomous mechanical and nonmechanical roles of keratin 8 in ß-cell function. We demonstrated the importance of keratin 8 in islet and ß-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.


Assuntos
Membrana Celular , Diabetes Mellitus Experimental , Transportador de Glucose Tipo 2 , Células Secretoras de Insulina , Queratina-8 , Mitocôndrias , Animais , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Camundongos , Queratina-8/metabolismo , Queratina-8/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Am J Physiol Renal Physiol ; 327(4): F553-F565, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052845

RESUMO

This review highlights the complexity of renal epithelial cell membrane architectures and organelles through careful review of ultrastructural and physiological studies published over the past several decades. We also showcase the vital roles played by the actin cytoskeleton and actin-associated myosin motor proteins in regulating cell type-specific physiological functions within the cells of the renal epithelium. The purpose of this review is to provide a fresh conceptual framework to explain the structure-function relationships that exist between the actin cytoskeleton, organelle structure, and cargo transport within the mammalian kidney. With recent advances in technologies to visualize the actin cytoskeleton and associated proteins within intact kidneys, it has become increasingly imperative to reimagine the functional roles of these proteins in situ to provide a rationale for their unique, cell type-specific functions that are necessary to establish and maintain complex physiological processes.


Assuntos
Citoesqueleto de Actina , Rim , Miosinas , Animais , Humanos , Miosinas/metabolismo , Rim/metabolismo , Citoesqueleto de Actina/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Actinas/metabolismo
10.
Prostate ; 84(9): 866-876, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590054

RESUMO

BACKGROUND: A few studies have examined the ultrastructure of prostatic neuroendocrine cells (NECs), and no study has focused on their ultrastructure in three dimensions. In this study, three-dimensional ultrastructural analysis of mouse prostatic NECs was performed to clarify their anatomical characteristics. METHODS: Three 13-week-old male C57BL/6 mice were deeply anesthetized, perfused with physiological saline and 2% paraformaldehyde, and then placed in 2.5% glutaraldehyde in 0.1 M cacodylate (pH 7.3) buffer for electron microscopy. After perfusion, the lower urinary tract, which included the bladder, prostate, coagulation gland, seminal vesicle, upper vas deferens, and urethra, was removed, and the specimen was cut into small cubes and subjected to postfixation and en bloc staining. Three-dimensional ultrastructural analysis was performed on NECs, the surrounding cells, tissues, and nerves using focused ion beam/scanning electron microscope tomography. RESULTS: Twenty-seven serial sections were used in the present study, and 32 mouse prostatic NECs were analyzed. Morphologically, the NECs could be classified into three types: flask, flat, and closed. Closed-shaped NECs were always adjacent to flask-shaped cells. The flask-shaped and flat NECs were in direct contact with the ductal lumen and always had microvilli at their contact points. Many of the NECs had accompanying nerves, some of which terminated on the surface in contact with the NEC. CONCLUSIONS: Three-dimensional ultrastructural analysis of mouse prostatic NECs was performed. These cells can be classified into three types based on shape. Novel findings include the presence of microvilli at their points of contact with the ductal lumen and the presence of accompanying nerves.


Assuntos
Camundongos Endogâmicos C57BL , Células Neuroendócrinas , Próstata , Animais , Masculino , Próstata/ultraestrutura , Próstata/inervação , Camundongos , Células Neuroendócrinas/ultraestrutura , Imageamento Tridimensional , Microscopia Eletrônica de Varredura
11.
Eur J Neurosci ; 59(7): 1407-1427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123503

RESUMO

DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.


Assuntos
Distonia Muscular Deformante , Distonia , Camundongos , Animais , Dopamina/análise , Distonia/genética , Distonia Muscular Deformante/genética , Corpo Estriado/química , Sinapses/ultraestrutura
12.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378783

RESUMO

When the temperature is increased, the heat-shock response is activated to protect the cellular environment. The transcriptomics and proteomics of this process are intensively studied, while information about how the cell responds structurally to heat stress is mostly lacking. Here, Saccharomyces cerevisiae were subjected to a mild continuous heat shock (38°C) and intermittently cryo-immobilised for electron microscopy. Through measuring changes in all distinguishable organelle numbers, sizes and morphologies in over 2100 electron micrographs, a major restructuring of the internal architecture of the cell during the progressive heat shock was revealed. The cell grew larger but most organelles within it expanded even more, shrinking the volume of the cytoplasm. Organelles responded to heat shock at different times, both in terms of size and number, and adaptations of the morphology of some organelles (such as the vacuole) were observed. Multivesicular bodies grew by almost 70%, indicating a previously unknown involvement in the heat-shock response. A previously undescribed electron-translucent structure accumulated close to the plasma membrane. This all-encompassing approach provides a detailed chronological progression of organelle adaptation throughout the cellular heat-stress response.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoplasma , Resposta ao Choque Térmico , Temperatura Alta , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos
13.
J Cell Sci ; 135(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36524422

RESUMO

The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p-Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox. This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo
14.
BMC Plant Biol ; 24(1): 530, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862888

RESUMO

BACKGROUND: Seed aging, a natural and inevitable process occurring during storage. Oats, an annual herb belonging to the Gramineae family and pooideae. In addition to being a healthy food, oats serve as ecological pastures, combating soil salinization and desertification. They also play a role in promoting grassland agriculture and supplementing winter livestock feed. However, the high lipid and fat derivatives contents of oat seeds make them susceptible to deterioration, as fat derivatives are prone to rancidity, affecting oat seed production, storage, development, and germplasm resource utilization. Comparative studies on the effects of aging on physiology and cytological structure in covered and naked oat seeds are limited. Thus, our study aimed to determine the mechanism underlying seed deterioration in artificially aged 'LongYan No. 3' (A. sativa) and 'BaiYan No. 2' (A. nuda) seeds, providing a basis for the physiological evaluation of oat seed aging and serving as a reference for scientifically safe storage and efficient utilization of oats. RESULTS: In both oat varieties, superoxide dismutase and catalase activities in seeds showed increasing and decreasing trends, respectively. Variance analysis revealed significant differences and interaction in all measured indicators of oat seeds between the two varieties at different aging times. 'LongYan No. 3' seeds, aged for 24-96 h, exhibited a germination rate of < 30%, Conductivity, malondialdehyde, soluble sugar, and soluble protein levels increased more significantly than the 'BaiYan No. 2'. With prolonged aging leading to cell membrane degradation, reactive oxygen species accumulation, disrupted antioxidant enzyme system, evident embryo cell swelling, and disordered cell arrangement, blocking the nutrient supply route. Simultaneously, severely concentrated chromatin in the nucleus, damaged mitochondrial structure, and impaired energy metabolism were noted, resulting in the loss of 'LongYan No. 3' seed vitality and value. Conversely, 'BaiYan No. 2' seeds showed a germination rate of 73.33% after 96 h of aging, consistently higher antioxidant enzyme activity during aging, normal embryonic cell shape, and existence of the endoplasmic reticulum. CONCLUSIONS: ROS accumulation and antioxidant enzyme system damage in aged oat seeds, nuclear chromatin condensation, mitochondrial structure damage, nucleic acid metabolism and respiration weakened, oat seed vigor decreased. 'LongYan No. 3' seeds were more severely damaged under artificial aging than 'BaiYan No. 2' seeds, highlighting their heightened susceptibility to aging effects.


Assuntos
Avena , Sementes , Avena/fisiologia , Avena/crescimento & desenvolvimento , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Temperatura Alta , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Germinação/fisiologia , Antioxidantes/metabolismo
15.
Small ; : e2404309, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246186

RESUMO

Understanding the localization and the interactions of biomolecules at the nanoscale and in the cellular context remains challenging. Electron microscopy (EM), unlike light-based microscopy, gives access to the cellular ultrastructure yet results in grey-scale images and averts unambiguous (co-)localization of biomolecules. Multimodal nanoparticle-based protein labels for correlative cathodoluminescence electron microscopy (CCLEM) and energy-dispersive X-ray spectromicroscopy (EDX-SM) are presented. The single-particle STEM-cathodoluminescence (CL) and characteristic X-ray emissivity of sub-20 nm lanthanide-doped nanoparticles are exploited as unique spectral fingerprints for precise label localization and identification. To maximize the nanoparticle brightness, lanthanides are incorporated in a low-phonon host lattice and separated from the environment using a passivating shell. The core/shell nanoparticles are then functionalized with either folic (terbium-doped) or caffeic acid (europium-doped). Their potential for (protein-)labeling is successfully demonstrated using HeLa cells expressing different surface receptors that bind to folic or caffeic acid, respectively. Both particle populations show single-particle CL emission along with a distinctive energy-dispersive X-ray signal, with the latter enabling color-based localization of receptors within swift imaging times well below 2 min per µ m $\umu\text{m}$ 2 while offering high resolution with a pixel size of 2.78 nm. Taken together, these results open a route to multi-color labeling based on electron spectromicroscopy.

16.
Planta ; 260(1): 21, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847829

RESUMO

MAIN CONCLUSION: Petal developmental characteristics in Fumarioideae were similar at early stages, and the specialized nectar holder/pollen container formed by the outer/inner petals. The micro-morphology of these two structures, however, shows diversity in seven species. Elaborate petals have been modified to form different types, including petal lobes, ridges, protuberances, and spurs, each with specialized functions. Nectar holder and pollen container presumably have a function in plant-pollinator interactions. In Fumarioideae, four elaborate petals of the disymmetric/zygomorphic flower present architecture forming the "nectar holder" and "pollen container" structure at the bottom and top separately. In the present study, the petals of seven species in Fumarioideae were investigated by scanning electron microscopy, light microscope, and transmission electron microscopes. The results show that petal development could divided into six stages: initiation, enlargement, adaxial/abaxial differentiation, elaborate specializations (sacs, spurs, and lobes formed), extension, and maturation, while the specialized "nectar holder" and "pollen container" structures mainly formed in stage 4. "Nectar holder" is developed from the shallow sac/spur differentiated at the base of the outer petal, eventually forming a multi-organized complex structure, together with staminal nectaries (1-2) with individual sizes. A semi-closed ellipsoidal "pollen container" is developed from the apical part of the 3-lobed inner petals fused by middle lobes and attain different sizes. The adaxial epidermis cells are specialized, with more distinct punctate/dense columnar protrusions or wavy cuticles presented on obviously thickening cell walls. In addition, a large and well-developed cavity appears between the inner and outer epidermis of the petals. As an exception, Hypecoum erectum middle lobes present stamen mimicry. Elaborate petal structure is crucial for comprehending the petal diversity in Fumarioideae and provides more evidence for further exploration of the reproductive study in Papaveraceae.


Assuntos
Flores , Microscopia Eletrônica de Varredura , Néctar de Plantas , Pólen , Flores/anatomia & histologia , Flores/ultraestrutura , Flores/crescimento & desenvolvimento , Pólen/ultraestrutura , Microscopia Eletrônica de Transmissão , Polinização
17.
Planta ; 260(3): 73, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150569

RESUMO

MAIN CONCLUSION: The ultrastructural design and biochemical organization of the significantly thickened outer tissues of the gametophytic stem of Hypnodendron menziesii optimizes load bearing of the stem. Hypnodendron menziesii is a bryoid umbrella moss growing in high humid conditions on the forest floors of New Zealand. The erect gametophyte bears up to eight whorls of branches in succession, spreading across the stem that bears the heavy weight of branches with highly hydrated leaves. Our investigation using a combination of light microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and TEM-immunolabeling techniques provided novel information on the structural design and biochemical organization of greatly thickened cell walls of epidermal, hypodermal, and outermost cortical tissues, comparing underlying thin-walled cortical tissues in the gametophytic stem. Probing into the ultrastructure of the cell wall architecture of these target tissues by TEM and SEM revealed the cell walls to display a multilamellar organization, in addition to demonstrating the presence of an electron-dense substance in the cell wall, presumably flavonoids. The pattern of distribution and concentration of rhamnogalacturonan, homogalacturonan, and heteromannan, as determined by immunogold labeling, suggests that it is the combination of structural and molecular design of the cell wall that may optimize the mechanical function of the epidermal, hypodermal, and outer cortical tissues. Statistical relationships between the overall thickness of epidermal, hypodermal, and outer cortical cell walls, the lumen area of cells and the percentage area of cell wall occupied in these tissues at different heights of the stem, and thickness of secondary cell wall layers (L1-L4/5) were explored. The results of these analyses unequivocally support the contribution of outer tissues to the mechanical strength of the resilient stem.


Assuntos
Parede Celular , Caules de Planta , Parede Celular/ultraestrutura , Caules de Planta/ultraestrutura , Microscopia Eletrônica de Varredura , Células Germinativas Vegetais/ultraestrutura , Bryopsida/ultraestrutura , Microscopia Eletrônica de Transmissão
18.
Cell Tissue Res ; 396(1): 57-69, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326636

RESUMO

3D bioengineered skeletal muscle macrotissues are increasingly important for studies of cell biology and development of therapeutics. Tissues derived from immortalized cells obtained from patient samples, or from pluripotent stem cells, can be co-cultured with motor-neurons to create models of human neuromuscular junctions in culture. In this study, we present foundational work on 3D cultured muscle ultrastructure, with and without motor neurons, which is enabled by the development of a new co-culture platform. Our results show that tissues from Duchenne muscular dystrophy patients are poorly organized compared to tissues grown from healthy donor and that the presence of motor neurons invariably improves sarcomere organization. Electron micrographs show that in the presence of motor neurons, filament directionality, banding patterns, z-disc continuity, and the appearance of presumptive SSR and T-tubule profiles all improve in healthy, DMD-, and iPSC-derived muscle tissue. Further work to identify the underlying defects of DMD tissue disorganization and the mechanisms by which motor neurons support muscle are likely to yield potential new therapeutic approaches for treating patients suffering from Duchenne muscular dystrophy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Elétrons , Músculo Esquelético , Neurônios Motores , Microscopia Eletrônica , Distrofina
19.
Cell Tissue Res ; 396(2): 141-155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38539007

RESUMO

Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.


Assuntos
Telócitos , Telócitos/citologia , Telócitos/metabolismo , Humanos , Animais
20.
Cell Tissue Res ; 397(2): 97-110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38771348

RESUMO

The saccus vasculosus is an organ present in gnathostome fishes, located ventral to the hypothalamus and posterior to the pituitary gland, whose structure is highly variable among species. In some fishes, this organ is well-developed; however, its physiological function is still under debate. Recently, it has been proposed that this organ is a seasonal regulator of reproduction. In the present work, we examined the histology, ultrastructure, and development of the saccus vasculosus in Cichlasoma dimerus. In addition, immunohistochemical studies of proteins related to reproductive function were performed. Finally, the potential response of this organ to different photoperiods was explored. C. dimerus presented a well-developed saccus vasculosus consisting of a highly folded epithelium, composed of coronet and supporting cells, closely associated with blood vessels, and a highly branched lumen connected to the third ventricle. Coronet cells showed all the major characteristics described in other fish species. In addition, some of the vesicles of the globules were positive for thyrotropin beta subunit, while luteinizing hormone beta subunit immunostaining was observed at the edge of the apical processes of some coronet cells. Furthermore, neuropeptide Y and gonadotropin inhibitory hormone innervation in the saccus vasculosus of C. dimerus were shown. Finally, animals exposed to the long photoperiod showed lower levels of thyrotropin beta and common alpha subunits expression in the saccus compared to those of animals exposed to short photoperiod. All these results support the hypothesis that the saccus vasculosus is involved in the regulation of reproductive function in fish.


Assuntos
Ciclídeos , Fotoperíodo , Animais , Ciclídeos/anatomia & histologia , Hipófise/metabolismo , Feminino , Masculino , Imuno-Histoquímica , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA