Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(42): e2207326119, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215478

RESUMO

Electrochemical conversion of CO2 into formate is a promising strategy for mitigating the energy and environmental crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Here, we report low-dimensional SnO2 quantum dots chemically coupled with ultrathin Ti3C2Tx MXene nanosheets (SnO2/MXene) that boost the CO2 conversion. The coupling structure is well visualized and verified by high-resolution electron tomography together with nanoscale scanning transmission X-ray microscopy and ptychography imaging. The catalyst achieves a large partial current density of -57.8 mA cm-2 and high Faradaic efficiency of 94% for formate formation. Additionally, the SnO2/MXene cathode shows excellent Zn-CO2 battery performance, with a maximum power density of 4.28 mW cm-2, an open-circuit voltage of 0.83 V, and superior rechargeability of 60 h. In situ X-ray absorption spectroscopy analysis and first-principles calculations reveal that this remarkable performance is attributed to the unique and stable structure of the SnO2/MXene, which can significantly reduce the reaction energy of CO2 hydrogenation to formate by increasing the surface coverage of adsorbed hydrogen.

2.
Small ; : e2404205, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161199

RESUMO

Highly-efficient and cost-effective electrocatalysts toward the oxygen evolution reaction (OER) are crucial for advancing sustainable energy technologies. Herein, a novel approach leveraging corrosion engineering is presented to facilitate the in situ growth of amorphous cobalt-iron hydroxides on nickel-iron foam (CoFe(OH)x-m/NFF) within a NaCl-CoCl2 aqueous solution. By adjusting the concentration of the solution, the compositions can tailored and morphologies of these hydroxides to optimize the OER electrocatalytic performance. Specifically, the CoFe(OH)x-500/NFF electrode manifests as distinctive 3D flower-like clusters composed of remarkably thin nanosheets, measuring a mere 1 nm in thickness. By virtue of the amorphous and ultrathin nanosheet structure, the CoFe(OH)x-500/NFF electrode exhibits superior OER activity, characterized by notably low overpotentials (η100, 274 mV) and an exceptionally small Tafel slope of 40.54 mV dec-1. Moreover, the electrode's performance remains robust, maintaining low overpotentials for 168 h at 100 mA cm-2. In situ Raman spectroscopy indicates that the hydroxides experience surface structural reconstruction and transform into high-valent CoFeO2 with active Co(IV)-O sites during the OER. Theoretical calculations underscore the critical role of the NiFe substrate in enhancing the electrode's OER activity by improving electrical conductivity and modifying the adsorption energy of reaction intermediates, thereby reducing the energy barrier for the reaction.

3.
Chemistry ; 30(5): e202302684, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37888750

RESUMO

The exploration of advanced nickel-based electrocatalysts for alkaline methanol oxidation reaction (MOR) holds immense promise for value-added organic products coupled with hydrogen production, but still remain challenging. Herein, we construct ultrathin NiO/Cr2 O3 in-plane heterostructures to promote the alkaline MOR process. Experimental and theoretical studies reveal that NiO/Cr2 O3 in-plane heterostructures enable a favorable upshift of the d-band center and enhanced adsorption of hydroxyl species, leading to accelerated generation of active NiO(OH)ads species. Furthermore, ultrathin in-plane heterostructures endow the catalyst with good charge transfer ability and adsorption behavior of methanol molecules onto catalytic sites, contributing to the improvement of alkaline MOR kinetics. As a result, ultrathin NiO/Cr2 O3 in-plane heterostructures exhibit a remarkable MOR activity with a high current density of 221 mA cm-2 at 0.6 V vs Ag/AgCl, which is 7.1-fold larger than that of pure NiO nanosheets and comparable with other highly active catalysts reported so far. This work provides an effectual strategy to optimize the activity of nickel-based catalysts and highlights the dominate efficacy of ultrathin in-plane heterostructures in alkaline MOR.

4.
Angew Chem Int Ed Engl ; 63(30): e202405765, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721653

RESUMO

In this study, peptide-based self-assembled nanosheets with a thickness of approximately 1 nm were prepared using a hierarchical covalent physical fabrication strategy. The covalent alternating polymerization of helical peptide E3 with an azobenzene (AZO) structure yielded copolymers CoP(E3-AZO), which physically self-assembled into ultrathin nanosheets in an unanticipated two-dimensional horizontal monolayer arrangement. This special monolayer arrangement enabled the thickness of the nanosheets to be equal to the cross-sectional diameter of a single linear copolymer, which is a rare phenomenon. Molecular dynamics simulations suggested that the synergistic effect of multiple molecular interactions drives the self-assembly of CoP(E3-AZO) into nanosheets and that various methods, including phototreatment, pH adjustment, the addition of additives, and introduction of cosolvents, can alter the molecular interactions and modulate the self-assembly of CoP(E3-AZO), yielding diverse nanostructures. Remarkably, the ultrathin nanosheets selectively inhibited cancer cells at certain concentrations.


Assuntos
Nanoestruturas , Peptídeos , Nanoestruturas/química , Peptídeos/química , Humanos , Simulação de Dinâmica Molecular , Compostos Azo/química , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Small ; 19(40): e2303440, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37282780

RESUMO

Electrocatalytic hydrogen evolution reaction (HER) is a promising way to produce pure and clean hydrogen. However, the preparation of efficient and economical catalysts for pH-universal HER remains a challenging but rewarding task. Herein, ultrathin RuZn nanosheets (NSs) with moiré superlattices and abundant edges are synthesized. The RuZn NSs with unique structure exhibit superb HER performance with overpotentials of 11, 13, and 29 mV to achieve 10 mA cm-2 in 1 M KOH, 1 M PBS, and 0.5 M H2 SO4 , respectively, which is substantially lower than those of Ru NSs and RuZn NSs without moiré superlattices. Density functional theory investigations reveal that the charge transfer from Zn to Ru will lead the appropriate downshift of the d-band center of surface Ru atoms, thus accelerating hydrogen desorption from the Ru sites, lowering the dissociation energy barrier of water and greatly improving the HER performance. This work provides an effective design scheme for high-performance HER electrocatalysts over a wide pH range, and propose a general route to prepare Ru-based bimetallic nanosheets with moiré superlattices.

6.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067607

RESUMO

The construction of hybrid junctions remains challenging for the rational design of visible light-driven photocatalysts. Herein, In2S3/CdS/N-rGO hybrid nanosheets were successfully prepared via a one-step pyrolysis method using deep eutectic solvents as precursors. Benefiting from the surfactant-free pyrolysis method, the obtained ultrathin hybrid nanosheets assemble into stable three-dimensional self-standing superstructures. The tremella-like structure of hybrid In2S3/N-rGO exhibits excellent photocatalytic hydrogen production performance. The hydrogen evolution rate is 10.9 mmol·g-1·h-1, which is greatly superior to CdS/N-rGO (3.7 mmol·g-1·h-1) and In2S3/N-rGO (2.6 mmol·g-1·h-1). This work provides more opportunities for the rational design and fabrication of hybrid ultrathin nanosheets for broad catalytic applications in sustainable energy and the environment.

7.
Angew Chem Int Ed Engl ; 62(19): e202218546, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853171

RESUMO

The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3 Bi2 I9 , Cs3 Sb2 I9 ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.

8.
Chemistry ; 28(66): e202201747, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36058891

RESUMO

Bismuth-oxygen moieties are beneficial for high-efficiency electrochemical CO2 reduction (CO2 RR) to produce formate; however, preserving bismuth-oxygen moieties while applying a cathodic potential is challenging. This work reports the preparation of ultrathin Bi2 O2 O/Bi2 O2 (OH)(NO3 ) nanosheets (BiON-uts) by in-situ tailoring of hydrogen bonds in a Bi2 O2 (OH)(NO3 ) precursor. The BiON-uts exhibits a formate faradaic efficiency of 98 % with higher partial current density than that of most reported bismuth-based catalysts. Mechanistic studies demonstrate that the ultrathin nanosheet morphology facilitates ion-exchange between BiON-uts and the electrolyte to produce Bi2 O2 CO3 as intermediate, and adsorption of CO2 with surface Bi2 O2 O. DFT calculations reveal that the rate-limiting first electron transfer is effectively improved by the high electron affinity of Bi2 O2 CO3 . More importantly, high-efficiency CO2 RR in turn protects the bismuth-oxygen moieties from being reduced and thus helps to maintain the excellent CO2 RR activity. This work offers an interactive mechanism of CO2 RR promotion and bismuth-oxygen moiety preservation, opening up new opportunities for developing high-performance catalysts.

9.
Chemistry ; 28(61): e202201860, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950688

RESUMO

To reduce the over-dependence on Pt, Pd-based catalysts have become one of the most effective candidates for oxygen reduction reaction (ORR). In order to further accelerate the ORR kinetics and strengthen the catalytic performance of Pd catalysts, component optimization and morphology design have been adopted. Although great progress has been made, it is still difficult to obtain porous ultrathin nanosheets with excellent performance by a simple method. Here, ultrathin PdCuMo porous nanosheets (PdCuMo NSs) were successfully prepared. This structure possessed a large specific surface area with rich cavities and structural defects, significantly enhancing its ORR performance. In special, the mass activity of PdCuMo NSs was 1.46 A mg-1 at 0.90 V, which was 12.2, 8.6, and 2.7 times as high as that of Pd/C, Pt/C, and PdCuMo nanoparticles (PdCuMo NPs), respectively. In addition, it had an excellent ability to resist CO poisoning and exhibited remarkable long-term stability.

10.
Nanotechnology ; 33(50)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36067735

RESUMO

Borophene has attracted extensive interests owing to its distinct structural, electronic and optical properties for promising potential applications. However, the structural instability and need of metal substrate for deposition of borophene seriously restrict the exploration of its exceptional physical and chemical properties and further hamper its extensive applications towards high-performance electronic and optoelectronic devices. Here, we reported the synthesis of high-quality freestandingα-rhombohedral borophene nanosheets by a facile probe ultrasonic approach in different organic solvents. The results show that the nanosheets have high-quality in ethanol solution and have an average lateral size of 0.54µm and a thickness of around 1.2 nm. Photoluminescence spectra indicate that a strong quantum confinement effect occurs in the nanosheets, which caused the increase of the band gap from 1.80 eV for boron powders and 2.52 eV for the nanosheets s. A nonvolatile memory device based on the nanosheets mixed with polyvinylpyrrolidone was fabricated, which exhibited a good rewriteable nonvolatile memory behavior and good stability.

11.
Nano Lett ; 21(1): 823-832, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33398997

RESUMO

Identification of active sites for highly efficient catalysts at the atomic scale for water splitting is still a great challenge. Herein, we fabricate ultrathin nickel-incorporated cobalt phosphide porous nanosheets (Ni-CoP) featuring an atomic heterometallic site (NiCo16-xP6) via a boron-assisted method. The presence of boron induces a release-and-oxidation mechanism, resulting in the gradual exfoliation of hydroxide nanosheets. After a subsequent phosphorization process, the resultant Ni-CoP nanosheets are implanted with unsaturated atomic heterometallic NiCo16-xP6 sites (with Co vacancies) for alkaline hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The optimized Ni-CoP exhibits a low overpotential of 88 and 290 mV at 10 mA cm-2 for alkaline HER and OER, respectively. This can be attributed to reduced free energy barriers, owing to the direct influence of center Ni atoms to the adjacent Co/P atoms in NiCo16-xP6 sites. These provide fundamental insights on the correlation between atomic structures and catalytic activity.

12.
Angew Chem Int Ed Engl ; 61(49): e202211585, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36217882

RESUMO

Herein, we have demonstrated the control over the structure of precatalysts to tune the properties of the active catalysts and their water oxidation activity. The reaction of K3 [Fe(CN)6 ] and Na2 [Fe(CN)5 (NO)] with Co(OH)2 @CC produced precatalysts PC-1 and PC-2, respectively, with distinct structural and electronic features. The replacement of the -CN group with strong π-acceptor -NO modulates the electronic and atomic structure of PC-2. As a result, a facile electrochemical transformation of PC-2 into active catalyst Fe-Co(OH)2 -Co(O)OH (AC-2) has been attained only in 15 CV cycles while 600 CV cycles are required for the electrochemical activation of PC-1 into AC-1. The X-ray absorption studies reveal the contraction of the Co-O and Fe-O bond in AC-2 because of the presence of a higher amount of Co3+ and Fe3+ than in AC-1. The high valent Co3+ and Fe3+ modulates the electronic properties of AC-2 and assists in the O-O bond formation, leading to the improved water oxidation activity.

13.
Angew Chem Int Ed Engl ; 60(10): 5505-5511, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258164

RESUMO

Two-dimensional (2D) semiconductors have recently become attractive candidate substrates for surface-enhanced Raman spectroscopy, exhibiting good semiconductor-based SERS sensing for a wider variety of application scenarios. However, the underlying mechanism remains unclear. Herein, we propose that surface defects play a vital role in the magnification of the SERS performances of 2D semiconductors. As a prototype material, ultrathin WO3 nanosheets is used to demonstrate that surface defect sites and the resulting increased charge-carrier density can induce strong charge-transfer interactions at the substrate-molecule interface, thereby improving the sensitivity of the SERS substrate by 100 times with high reproducibility. Further work with other metal oxides suggests the reduced dimension of 2D materials can be advantageous in promoting SERS sensing for multiple probe molecules.

14.
Small ; 16(44): e2004188, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33043586

RESUMO

In order to further overcome the shortage of electrodes with additive/binder and modulate the structure of NiCo2 O4 for supercapacitors, ultrathin NiCo2 O4 nanosheet arrays have been in situ grown on Ni foam by optimizing hydrothermal reactions based on crystal growth dynamics. The structure of ultrathin NiCo2 O4 nanosheet arrays can expose more active sites, provide abundant diffusion channels and buffer the stress caused by phase transition during charge-discharge process of supercapacitors. The optimized hydrothermal reactions can provide more ordered crystal orientations by keeping nanosheets on Ni foam completely coming from in situ growth, which will decrease the inner resistance of ultrathin NiCo2 O4 nanosheets and improve the efficiency and kinetics of electrons transfer. By the virtue of such remarkable features, the electrochemical results confirm the rationality of structural modulation and crystal orientations optimization with a drastically enhanced specific capacitance of 2017.8 F g-1 , admirable rate performance of 93.2% and outstanding stability retention of 90.9% after cycling 5000 times. More impressively, the assembled flexible solid-state asymmetric supercapacitor (ASC) shows superior energy density, power density, and high stability. The modification strategy in this paper may throw light on the rational design of new generation advanced electrode materials for high-performance flexible supercapacitors.

15.
Small ; 16(35): e2000698, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776405

RESUMO

The realizing of high-performance rechargeable aqueous zinc-ion batteries (ZIBs) with high energy density and long cycling life is promising but still challenging due to the lack of suitable layered cathode materials. The work reports the excellent zinc-ion storage performance as-observed in few-layered ultrathin VSe2 nanosheets with a two-step Zn2+ intercalation/de-intercalation mechanism verified by ex situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterizations. The VSe2 nanosheets exhibit a discharge plateau at 1.0-0.7 V, a specific capacity of 131.8 mAh g-1 (at 0.1 A g-1 ), and a high energy density of 107.3 Wh kg-1 (at a power density of 81.2 W kg-1 ). More importantly, outstanding cycle stability (capacity retention of 80.8% after 500 cycles) without any activation process is achieved. Such a prominent cyclic stability should be attributed to its fast Zn2+ diffusion kinetics (DZn 2+  ≈ 10-8 cm-2 s-1 ) and robust structural/crystalline stability. Density functional theory (DFT) calculation further reveals a strong metallic characteristic and optimal zinc-ion diffusion pathway with a hopping energy barrier of 0.91 eV. The present finding implies that 2D ultrathin VSe2 is a very promising cathode material in ZIBs with remarkable battery performance superior to other layered transitional metal dichalcogenides.

16.
Small ; 16(4): e1905700, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31885160

RESUMO

Codoping of N and O in ultrathin graphitic carbon nitride (g-C3 N4 ) nanosheets leads to an inner electric field. This field restrains the recombination of photogenerated carriers and, thus, enhances hydrogen evolution. The layered structure of codoped g-C3 N4 nanosheets (N-O-CNNS) not only provides abundant sites of contact with the reaction medium, but also decreases the distance over which the photogenerated electron-hole pairs are transported to the reaction interface. Quantum confinement in the ultrathin structure results in an increased bandgap and makes the photocatalytic reaction more favorable than bulk g-C3 N4 . Under visible light irradiation, N-O-CNNS with 3 wt% Pt achieves a hydrogen evolution rate of 9.2 mmol g-1 h-1 and a value of 46.9 mmol g-1 h-1 under AM1.5 with 5 wt% Pt. Thus, this work paves the way for designing efficient nanostructures with increased separation/transfer efficiency of photogenerated carriers and, hence, increased photocatalytic activities.

17.
Small ; 15(10): e1804407, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30724461

RESUMO

Developing electrocatalysts with ultrathin nanostructures and high mesoporosity is a relevant high-priority research direction toward enhancing the performance of noble metals. Herein, mesoporous, highly excavated octahedral PtCu3 nanostructures are prepared by a facile one-pot synthesis. The mesoporous, highly excavated octahedral PtCu3 nanostructures are built with mutually perpendicular interlaced mesoporous nanosheets with a thickness of ≈4.5 nm. Benefiting from its mesoporous features, three-dimensional (3D) open surfaces, ultrathin nanosheets, and a Cu-rich surface, PtCu3 exhibits excellent electrocatalytic performance and high antipoisoning activity toward the methanol oxidation reaction.

18.
Small ; 15(10): e1804806, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30721571

RESUMO

Anodes involving conversion and alloying reaction mechanisms are attractive for potassium-ion batteries (PIBs) due to their high theoretical capacities. However, serious volume change and metal aggregation upon potassiation/depotassiation usually cause poor electrochemical performance. Herein, few-layered SnS2 nanosheets supported on reduced graphene oxide (SnS2 @rGO) are fabricated and investigated as anode material for PIBs, showing high specific capacity (448 mAh g-1 at 0.05 A g-1 ), high rate capability (247 mAh g-1 at 1 A g-1 ), and improved cycle performance (73% capacity retention after 300 cycles). In this composite electrode, SnS2 nanosheets undergo sequential conversion (SnS2 to Sn) and alloying (Sn to K4 Sn23 , KSn) reactions during potassiation/depotassiation, giving rise to a high specific capacity. Meanwhile, the hybrid ultrathin nanosheets enable fast K storage kinetics and excellent structure integrity because of fast electron/ionic transportation, surface capacitive-dominated charge storage mechanism, and effective accommodation for volume variation. This work demonstrates that K storage performance of alloy and conversion-based anodes can be remarkably promoted by subtle structure engineering.

19.
Small ; 15(35): e1902218, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31293075

RESUMO

Controllable synthesis of ultrathin metal-organic framework (MOF) nanosheets and rational design of their nano/microstructures in favor of electrochemical catalysis is critical for their renewable energy applications. Herein, an in situ growth method is proposed to prepare the ultrathin NiFe MOF nanosheets with a thickness of 1.5 nm, which are vertically inlaid into a 3D ordered macroporous structure of NiFe hydroxide. The well-designed composite delivers an efficient electrocatalytic performance with a low overpotential of 270 mV at a current density of 10 mA cm-2 and stable electrolysis as long as 10 h toward the electrochemical oxygen evolution reaction, much superior to the state-of-the-art RuO2 electrocatalyst. A comprehensive analysis demonstrates that the excellent performance originates from the desirable combination of the highly exposed active centers in the ultrathin bimetallic MOF nanosheets, effective electron conduction between MOF nanosheets and ordered macroporous hydroxide, and efficient mass transfer across the hierarchically porous hybridization. This study sheds light on the exploration of powerful protocols to gain diverse high-performance MOF nanosheets and may open a perspective to achieve their efficient electrocatalytic performance.

20.
Small ; 15(22): e1901024, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31026129

RESUMO

Achieving highly efficient hierarchical photocatalysts for hydrogen evolution is always challenging. Herein, hierarchical mesoporous NiO@N-doped carbon microspheres (HNINC) are successfully fabricated with ultrathin nanosheet subunits as high-performance photocatalysts for hydrogen evolution. The unique architecture of N-doped carbon layers and hierarchical mesoporous structures from HNINC could effectively facilitate the separation and transfer of photo-induced electron-hole pairs and afford rich active sites for photocatalytic reactions, leading to a significantly higher H2 production rate than NiO deposited with platinum. Density functional theory calculations reveal that the migration path of the photo-generated electron transfer is from Ni 3d and O 2p hybrid states of NiO to the C 2p state of graphite, while the photo-generated holes locate at Ni 4s and Ni 4p hybrid states of NiO, which is beneficial to improve the separation of photo-generated electron-hole pairs. Gibbs free energy of the intermediate state for hydrogen evolution reaction is calculated to provide a fundamental understanding of the high H2 production rate of HNINC. This research sheds light on developing novel photocatalysts for efficient hydrogen evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA