Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39056945

RESUMO

To solve the separation of multi-source signals and detect their features from a single channel, a signal separation method using multi-constraint non-negative matrix factorization (NMF) is proposed. In view of the existing NMF algorithm not performing well in the underdetermined blind source separation, the ß-divergence constraints and determinant constraints are introduced in the NMF algorithm, which can enhance local feature information and reduce redundant components by constraining the objective function. In addition, the Sine-bell window function is selected as the processing method for short-time Fourier transform (STFT), and it can preserve the overall feature distribution of the original signal. The original vibration signal is first transformed into time-frequency domain with the STFT, which describes the local characteristic of the signal from the time-frequency distribution. Then, the multi-constraint NMF is applied to reduce the dimensionality of the data and separate feature components in the low dimensional space. Meanwhile, the parameter WK is constructed to filter the reconstructed signal that recombined with the feature component in the time domain. Ultimately, the separated signals will be subjected to envelope spectrum analysis to detect fault features. The simulated and experimental results indicate the effectiveness of the proposed approach, which can realize the separation of multi-source signals and their fault diagnosis of bearings. In addition, it is also confirmed that the proposed method, juxtaposed with the NMF algorithm of the traditional objective function, is more applicable for compound fault diagnosis of the rotating machinery.

2.
Sensors (Basel) ; 23(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850657

RESUMO

Blind source separation (BSS) recovers source signals from observations without knowing the mixing process or source signals. Underdetermined blind source separation (UBSS) occurs when there are fewer mixes than source signals. Sparse component analysis (SCA) is a general UBSS solution that benefits from sparse source signals which consists of (1) mixing matrix estimation and (2) source recovery estimation. The first stage of SCA is crucial, as it will have an impact on the recovery of the source. Single-source points (SSPs) were detected and clustered during the process of mixing matrix estimation. Adaptive time-frequency thresholding (ATFT) was introduced to increase the accuracy of the mixing matrix estimations. ATFT only used significant TF coefficients to detect the SSPs. After identifying the SSPs, hierarchical clustering approximates the mixing matrix. The second stage of SCA estimated the source recovery using least squares methods. The mixing matrix and source recovery estimations were evaluated using the error rate and mean squared error (MSE) metrics. The experimental results on four bioacoustics signals using ATFT demonstrated that the proposed technique outperformed the baseline method, Zhen's method, and three state-of-the-art methods over a wide range of signal-to-noise ratio (SNR) ranges while consuming less time.

3.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203028

RESUMO

Underdetermined blind source separation (UBSS) has garnered significant attention in recent years due to its ability to separate source signals without prior knowledge, even when sensors are limited. To accurately estimate the mixed matrix, various clustering algorithms are typically employed to enhance the sparsity of the mixed matrix. Traditional clustering methods require prior knowledge of the number of direct signal sources, while modern artificial intelligence optimization algorithms are sensitive to outliers, which can affect accuracy. To address these challenges, we propose a novel approach called the Genetic Simulated Annealing Optimization (GASA) method with Adaptive Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering as initialization, named the CYYM method. This approach incorporates two key components: an Adaptive DBSCAN to discard noise points and identify the number of source signals and GASA optimization for automatic cluster center determination. GASA combines the global spatial search capabilities of a genetic algorithm (GA) with the local search abilities of a simulated annealing algorithm (SA). Signal simulations and experimental analysis of compressor fault signals demonstrate that the CYYM method can accurately calculate the mixing matrix, facilitating successful source signal recovery. Subsequently, we analyze the recovered signals using the Refined Composite Multiscale Fuzzy Entropy (RCMFE), which, in turn, enables effective compressor connecting rod fault diagnosis. This research provides a promising approach for underdetermined source separation and offers practical applications in fault diagnosis and other fields.

4.
Entropy (Basel) ; 23(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34573842

RESUMO

In practical engineering applications, the vibration signals collected by sensors often contain outliers, resulting in the separation accuracy of source signals from the observed signals being seriously affected. The mixing matrix estimation is crucial to the underdetermined blind source separation (UBSS), determining the accuracy level of the source signals recovery. Therefore, a two-stage clustering method is proposed by combining hierarchical clustering and K-means to improve the reliability of the estimated mixing matrix in this paper. The proposed method is used to solve the two major problems in the K-means algorithm: the random selection of initial cluster centers and the sensitivity of the algorithm to outliers. Firstly, the observed signals are clustered by hierarchical clustering to get the cluster centers. Secondly, the cosine distance is used to eliminate the outliers deviating from cluster centers. Then, the initial cluster centers are obtained by calculating the mean value of each remaining cluster. Finally, the mixing matrix is estimated with the improved K-means, and the sources are recovered using the least square method. Simulation and the reciprocating compressor fault experiments demonstrate the effectiveness of the proposed method.

5.
Sensors (Basel) ; 19(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909420

RESUMO

To identify the major vibration and radiation noise, a source contribution quantitative estimation method is proposed based on underdetermined blind source separation. First, the single source points (SSPs) are identified by directly searching the identical normalized time-frequency vectors of mixed signals, which can improve the efficiency and accuracy in identifying SSPs. Then, the mixing matrix is obtained by hierarchical clustering, and source signals can also be recovered by the least square method. Second, the optimal combination coefficients between source signals and mixed signals can be calculated based on minimum redundant error energy. Therefore, mixed signals can be optimally linearly combined by source signals via the coefficients. Third, the energy elimination method is used to quantitatively estimate source contributions. Finally, the effectiveness of the proposed method is verified via numerical case studies and experiments with a cylindrical structure, and the results show that source signals can be effectively recovered, and source contributions can be quantitatively estimated by the proposed method.

6.
Entropy (Basel) ; 21(5)2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33267159

RESUMO

In order to separate and extract compound fault features of a vibration signal from a single channel, a novel signal separation method is proposed based on improved sparse non-negative matrix factorization (SNMF). In view of the traditional SNMF failure to perform well in the underdetermined blind source separation, a constraint reference vector is introduced in the SNMF algorithm, which can be generated by the pulse method. The square wave sequences are constructed as the constraint reference vector. The output separated signal is constrained by the vector, and the vector will update according to the feedback of the separated signal. The redundancy of the mixture signal will be reduced during the constantly updating of the vector. The time-frequency distribution is firstly applied to capture the local fault features of the vibration signal. Then the high dimension feature matrix of time-frequency distribution is factorized to select local fault features with the improved SNMF method. Meanwhile, the compound fault features can be separated and extracted automatically by using the sparse property of the improved SNMF method. Finally, envelope analysis is used to identify the feature of the output separated signal and realize compound faults diagnosis. The simulation and test results show that the proposed method can effectively solve the separation of compound faults for rotating machinery, which can reduce the dimension and improve the efficiency of algorithm. It is also confirmed that the feature extraction and separation capability of proposed method is superior to the traditional SNMF algorithm.

7.
Sensors (Basel) ; 17(9)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28891999

RESUMO

This paper considers the complex-valued mixing matrix estimation and direction-of-arrival (DOA) estimation of synchronous orthogonal frequency hopping (FH) signals in the underdetermined blind source separation (UBSS). A novel mixing matrix estimation algorithm is proposed by detecting single source points (SSPs) where only one source contributes its power. Firstly, the proposed algorithm distinguishes the SSPs by the comparison of the normalized coefficients of time frequency (TF) points, which is more effective than existing detection algorithms. Then, mixing matrix of FH signals can be estimated by the hierarchical clustering method. To sort synchronous orthogonal FH signals, a modified subspace projection method is presented to obtain the DOAs of FH. One superiority of this paper is that the estimation accuracy of the mixing matrix can be significantly improved by the proposed SSPs detection criteria. Another superiority of this paper is that synchronous orthogonal FH signals can be sorted in underdetermined condition. The experimental results demonstrate the efficiency of the two proposed algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA