Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(6)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574458

RESUMO

In this paper, a novel two-dimensional (2D) direction-of-arrival (DOA) estimation algorithm for the mixed circular and strictly noncircular sources is proposed. A general array model with a mixture of signals is firstly built based on uniform rectangular arrays (URAs), and then, the approach, which uses the rank-reduction-based ROOT-MUSIC, can solve 2D DOA estimation problem. Besides, the theoretical error of the proposed algorithm, a criterion of the performance for evaluation, is analyzed by the first-order Taylor expression using second-order statistics. As verified by the simulation results, a better DOA estimation performance and a lower computational complexity are achieved by the proposed algorithm than the existing methods resorting to the noncircularity of the incoming signals.

2.
Sensors (Basel) ; 17(9)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837115

RESUMO

This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs). We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data information of each subarray, we only perform difference-operation on the auto-correlations, while the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use more data information of the sample covariance matrix and also suppress the effect of additive noise more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation performance largely as compared to the others, in white or colored noise conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA