Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39445741

RESUMO

The clinical manifestation of Parkinson's disease exhibits significant heterogeneity in the prevalence of non-motor symptoms and the rate of progression of motor symptoms, suggesting that Parkinson's disease can be classified into distinct subtypes. In this study, we aimed to explore this heterogeneity by identifying a set of subtypes with distinct patterns of spatiotemporal trajectories of neurodegeneration. We applied Subtype and Stage Inference (SuStaIn), an unsupervised machine learning algorithm that combined disease progression modelling with clustering methods, to cortical and subcortical neurodegeneration visible on 3 T structural MRI of a large cross-sectional sample of 504 patients and 279 healthy controls. Serial longitudinal data were available for a subset of 178 patients at the 2-year follow-up and for 140 patients at the 4-year follow-up. In a subset of 210 patients, concomitant Alzheimer's disease pathology was assessed by evaluating amyloid-ß concentrations in the CSF or via the amyloid-specific radiotracer 18F-flutemetamol with PET. The SuStaIn analysis revealed three distinct subtypes, each characterized by unique patterns of spatiotemporal evolution of brain atrophy: neocortical, limbic and brainstem. In the neocortical subtype, a reduction in brain volume occurred in the frontal and parietal cortices in the earliest disease stage and progressed across the entire neocortex during the early stage, although with relative sparing of the striatum, pallidum, accumbens area and brainstem. The limbic subtype represented comparative regional vulnerability, which was characterized by early volume loss in the amygdala, accumbens area, striatum and temporal cortex, subsequently spreading to the parietal and frontal cortices across disease stage. The brainstem subtype showed gradual rostral progression from the brainstem extending to the amygdala and hippocampus, followed by the temporal and other cortices. Longitudinal MRI data confirmed that 77.8% of participants at the 2-year follow-up and 84.0% at the 4-year follow-up were assigned to subtypes consistent with estimates from the cross-sectional data. This three-subtype model aligned with empirically proposed subtypes based on age at onset, because the neocortical subtype demonstrated characteristics similar to those found in the old-onset phenotype, including older onset and cognitive decline symptoms (P < 0.05). Moreover, the subtypes correspond to the three categories of the neuropathological consensus criteria for symptomatic patients with Lewy pathology, proposing neocortex-, limbic- and brainstem-predominant patterns as different subgroups of α-synuclein distributions. Among the subtypes, the prevalence of biomarker evidence of amyloid-ß pathology was comparable. Upon validation, the subtype model might be applied to individual cases, potentially serving as a biomarker to track disease progression and predict temporal evolution.

2.
Mol Oncol ; 17(6): 1024-1040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36550781

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer that lacks targeted therapy. TNBC manifests characteristic, extensive intratumoral heterogeneity that promotes disease progression and influences drug response. Single-cell techniques in combination with next-generation computation provide an unprecedented opportunity to identify molecular events with therapeutic potential. Here, we describe the generation of a comprehensive mass cytometry panel for multiparametric detection of 23 phenotypic markers and 13 signaling molecules. This single-cell proteomic approach allowed us to explore the landscape of TNBC heterogeneity, with particular emphasis on the tumor microenvironment. We prospectively profiled freshly resected tumors from 26 TNBC patients. These tumors contained phenotypically distinct subpopulations of cancer and stromal cells that were associated with the patient's clinical status at the time of surgery. We further classified the epithelial-mesenchymal plasticity of tumor cells, and molecularly defined phenotypically diverse populations of tumor-associated stroma. Furthermore, in a retrospective tissue-microarray TNBC cohort, we showed that the level of CD97 at the time of surgery has prognostic potential.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Proteômica , Estudos Retrospectivos , Transdução de Sinais , Células Estromais/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Ann Oper Res ; : 1-37, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36312208

RESUMO

The paper examines whether the structure of the risk factor disclosure in an IPO prospectus helps explain the cross-section of first-day returns in a sample of Chinese initial public offerings. This paper analyzes the semantics and content of risk disclosure based on an unsupervised machine learning algorithm. From both long-term and short-term perspectives, this paper explores how the information effect and risk effect of risk disclosure play their respective roles. The results show that risk disclosure has a stronger risk effect at the semantic novelty level and a more substantial information effect at the risk content level. A novel aspect of the paper lies in the use of text analysis (semantic novelty and content richness) to characterize the structure of the risk factor disclosure. The study shows that initial IPO returns negatively correlate with semantic novelty and content richness. We show the interaction between risk effect and information effect on risk disclosure under the nature of the same stock plate. When enterprise information transparency is low, the impact of semantic novelty and content richness on the IPO market is respectively enhanced.

4.
JMIR Public Health Surveill ; 7(6): e23105, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34185004

RESUMO

BACKGROUND: Despite numerous counteracting efforts, antivaccine content linked to delays and refusals to vaccinate has grown persistently on social media, while only a few provaccine campaigns have succeeded in engaging with or persuading the public to accept immunization. Many prior studies have associated the diversity of topics discussed by antivaccine advocates with the public's higher engagement with such content. Nonetheless, a comprehensive comparison of discursive topics in pro- and antivaccine content in the engagement-persuasion spectrum remains unexplored. OBJECTIVE: We aimed to compare discursive topics chosen by pro- and antivaccine advocates in their attempts to influence the public to accept or reject immunization in the engagement-persuasion spectrum. Our overall objective was pursued through three specific aims as follows: (1) we classified vaccine-related tweets into provaccine, antivaccine, and neutral categories; (2) we extracted and visualized discursive topics from these tweets to explain disparities in engagement between pro- and antivaccine content; and (3) we identified how those topics frame vaccines using Entman's four framing dimensions. METHODS: We adopted a multimethod approach to analyze discursive topics in the vaccine debate on public social media sites. Our approach combined (1) large-scale balanced data collection from a public social media site (ie, 39,962 tweets from Twitter); (2) the development of a supervised classification algorithm for categorizing tweets into provaccine, antivaccine, and neutral groups; (3) the application of an unsupervised clustering algorithm for identifying prominent topics discussed on both sides; and (4) a multistep qualitative content analysis for identifying the prominent discursive topics and how vaccines are framed in these topics. In so doing, we alleviated methodological challenges that have hindered previous analyses of pro- and antivaccine discursive topics. RESULTS: Our results indicated that antivaccine topics have greater intertopic distinctiveness (ie, the degree to which discursive topics are distinct from one another) than their provaccine counterparts (t122=2.30, P=.02). In addition, while antivaccine advocates use all four message frames known to make narratives persuasive and influential, provaccine advocates have neglected having a clear problem statement. CONCLUSIONS: Based on our results, we attribute higher engagement among antivaccine advocates to the distinctiveness of the topics they discuss, and we ascribe the influence of the vaccine debate on uptake rates to the comprehensiveness of the message frames. These results show the urgency of developing clear problem statements for provaccine content to counteract the negative impact of antivaccine content on uptake rates.


Assuntos
Movimento contra Vacinação , Mídias Sociais , Vacinação , Algoritmos , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA