RESUMO
Bright afterglow room-temperature phosphorescence (RTP) soon after ceasing excitation is a promising technique for greatly increasing anti-counterfeiting capabilities. The development of a process for rapid high-resolution afterglow patterning of crystalline materials can improve both high-speed fabrication of anti-counterfeiting afterglow media and stable afterglow readout compared with those achieved with amorphous materials. Here, the high-resolution afterglow patterning of crystalline materials via cooperative organic vapo- and photo-stimulation is reported. A single crystal of (S)-(-)-2,2'-bis(diphenylphosphino)-5,5',6,6',7,7'8,8'-octahydro-1,1'-binaphthyl [(S)-H8-BINAP] doped with (S)-(-)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(S)-BINAP] shows green afterglow RTP. Crystals of (S)-BINAP-doped (S)-H8-BINAP changed to an amorphous state with no afterglow capability on weak continuous photoirradiation under dichloromethane (DCM) vapor. Photoirradiation induced oxidation of the (S)-H8-BINAP host molecule in the crystal. The oxidized (S)-H8-BINAP forms on the crystal surface strongly interacted with DCM molecules, which induces melting of the (S)-BINAP-doped (S)-H8-BINAP crystal and trigger formation of an amorphous state without an afterglow capability. High-resolution afterglow patterning of the crystalline film is rapidly achieved by using cooperative organic vapo- and photo-stimulation. In addition to the benefit of rapid afterglow patterning, the formed afterglow images of the crystalline film can be repeatedly read out under ambient conditions without DCM vapor.
RESUMO
Organic vapochromic materials which undergo a drastic change in their photophysical properties upon exposure to vapors or gases are attracting growing scientific attention because of their low price and wide range of possible applications. In this work, luminescence vapochromism of carbazole-pyridinium-based organic salts with a general structure of (CzPy)X (CzPy+=2,3-di(9H-carbazol-9-yl)pyridinium ion; X=Cl, Br or I) is reported. It was found that (CzPy)X compounds form J-aggregates, which rearranged back to monomeric form upon exposure to methanol, ethanol, acetone, and water vapors. In contrast, acetonitrile was found to promote the J-aggregation in (CzPy)X compounds by occupying the voids in their crystal lattice and pushing cations closer together. It was further demonstrated that the efficiency of J-aggregation in (CzPy)X compounds depends on the size of the anion, which was employed to realize dynamic luminescence vapochromism, with vapochromic response times ranging from a couple of minutes in (CzPy)Cl to more than an hour in (CzPy)I. In addition, (CzPy)X compounds exhibited high melting points of about 250 °C and excellent thermal stability. (CzPy)Cl and (CzPy)Br have also shown good photoluminescence quantum yields at room temperature in a solid state.
RESUMO
Here, we report the synthesis of adamantane-based macrocycle 2 by combining adamantane building blocks with π-donor 1,3-dimethoxy-benzene units. An unpredictable keto-adamantane-based macrocycle 3 was obtained by the oxidation of 2 using DDQ as an oxidant. Moreover, a new type of macrocyclic molecule-based CT cocrystal was prepared through exo-wall CT interactions between 3 and DDQ. The cocrystal material showed selective vapochromism behavior towards THF, specifically, among nine volatile organic solvents commonly used in the laboratory. Powder X-ray diffraction; UV-Vis diffuse reflectance spectroscopy; 1H NMR; and single crystal X-ray diffraction analyses revealed that color changes are attributed to the vapor-triggered decomplexation of cocrystals.
RESUMO
Chirality-driven self-sorting plays an essential role in controlling the biofunction of biosystems, such as the chiral double-helix structure of DNA from self-recognition by hydrogen bonding. However, achieving precise control over the chiral self-sorted structures and their functional properties for the bioinspired supramolecular systems still remains a challenge, not to mention realizing dynamically reversible regulation. Herein, we report an unprecedented saucer[4]arene-based charge transfer (CT) cocrystal system with dynamically reversible chiral self-sorting synergistically induced by chiral triangular macrocycle and organic vapors. It displays efficient chain length-selective vapochromism toward alkyl ketones due to precise modulation of optical properties by vapor-induced diverse structural transformations. Experimental and theoretical studies reveal that the unique vapochromic behavior is mainly attributed to the formation of homo- or heterochiral self-sorted assemblies with different alkyl ketone guests, which differ dramatically in solid-state superstructures and CT interactions, thus influencing their optical properties. This work highlights the essential role of chiral self-sorting in controlling the functional properties of synthetic supramolecular systems, and the rarely seen controllable chiral self-sorting at the solid-vapor interface deepens the understanding of efficient vapochromic sensors.
RESUMO
Stimulus-responsive organic materials with luminescence switching properties have attracted considerable attention for their practical applications in sensing, security, and display devices. In this paper, bent-type bisbenzofuropyrazine derivatives, Bent-H and Bent-sBu, with good solubilities were synthesized, and their physical and optical properties were investigated in detail. Bent-H gave three crystalline polymorphs, and they showed different luminescence properties depending on their crystal packing structures. In addition, Bent-H exhibited mechanochromic luminescence in spite of its rigid skeleton. Bent-sBu exhibited unique concentration-dependent vapochromic luminescence. Ground Bent-sBu was converted to blue-emissive, green-emissive, and green-emissive high-viscosity solution states at low, moderate, and high concentrations of CHCl3 vapor, respectively. This finding represents a concentration-dependent multi-phase transition with an organic solvent, which is of potent interest for application in sensing systems.
RESUMO
Controlled self-assembly of PtII complexes is key to the development of optical and stimuli-responsive materials, but designing and precisely controlling them is still difficult owing to weak intermolecular interactions. Herein, we report the successful water-vapor-induced assembly of an anionic PtII complex [Pt(CN)2 (ppy)]- (Hppy=2-phenylpyridine) electrostatically loaded onto cationically charged layered double hydroxide (LDH) nanoparticles consisting of Mg2+ and Al3+ ions. When the PtII complexes were densely loaded onto the LDH nanoparticles, the assembly was maintained, even in dilute aqueous media. In the case of sparse loading, the PtII complexes were loaded discretely in the dry state; however, when water vapor was adsorbed, the increased mobility of the PtII complexes led to their assembly on the LDH nanoparticles. The presence of water vapor led to a drastic change in luminescence from green to orange.
RESUMO
A conformationally restricted P,N-ligand capable of the design of polynuclear copper(I) complexes was synthesized via the reaction of primary pyridylphosphine, paraformaldehyde, and benzhydrylamine. The reaction of the ligand with copper(I) iodide leads to the tetranuclear copper(I) complex with the octahedral type of copper-iodide core. Different orientation of coordination bonds of the ligands relative to the P,N2 -heterocyclic fragments and to the Cu4 I4 cores leads to the existence of two types of conformers of the complex with "compact" or "stretched" geometry of the Cu4 I4 cluster. This lability of the complex allowed for obtaining two crystalline phases displaying green or red luminescence. The TDDFT computations along with XRD structural analysis gave a strong interpretation of the green emission belonging to the "compact" form of the complex and belonging of the red emission to the "stretched" form. Moreover, both crystalline phases demonstrate the strong vapochromic responses of luminescence on the vapors of wide range of solvents.
RESUMO
The light-transmissive properties of a solid-state tetrathiafulvalene radical cation-bis(trifluoromethanesulfonyl)imide, 1-C5 â + â NTf2 - , underwent instantaneous changes in the short-wave infrared (SWIR) region (1000-2500â nm) upon exposure to solvent vapor or the application of mechanostress at room temperature. The initial solid state of 1-C5 â + â NTf2 - exhibited strong absorption in the near-infrared (NIR; 700-1000â nm) and SWIR regions, whereas the absorption in the SWIR region was significantly diminished in the stimulated state induced by dichloromethane vapor. Upon cessation of vapor stimulation, the solid state spontaneously and promptly reverted to its original state, characterized by absorption bands in the NIR/SWIR region. Moreover, the SWIR absorption was absent upon the application of mechanical stress using a steel spatula. The reversal was fast and occurred within 10â s. These changes were visualized using a SWIR imaging camera under 1450-nm light irradiation. Experimental investigations demonstrated that the transparency to the SWIR light in the solid states was modulated through significant structural transformations of the associated radical cations, with transitions between columnar and isolated π-dimer structures under ambient and stimulated conditions, respectively.
RESUMO
The vapochromic single-crystal-to-single-crystal (SCSC) transformation of a highly luminescent PtII complex bearing an N-heterocyclic carbene [Pt(CN)2 (tBu-impy)] (tBu-impyH+ =1-tert-butyl-3-(2-pyridyl)-1H-imidazolium) is reported. The trihydrate form of the complex, which exhibits blue 3 MMLCT emission owing to weak Ptâ â â Pt interactions, changed its luminescence color from blue to yellowish-green upon the desorption of water molecules while keeping the high emission quantum yield of more than 0.45. Variable-temperature and continuous in-situ tracking of single-crystal X-ray diffraction measurements revealed that the SCSC transformation proceeds reversibly by the release and reabsorption of water molecules, thereby changing the stacked structure slightly. As a result, the dynamics of vapor-induced SCSC transformation were elucidated: that the anhydrous form returned to the original trihydrate form in a two-step process under a water vapor atmosphere. In addition, the PtII complex exhibited a similar SCSC response accompanied by a luminescence color change in the presence of methanol vapor, while being inactive toward ethanol vapor.
RESUMO
Two vapochromic dyes (DMx and DM) were synthesized to be used for textile-based sensors detecting the vapor phase of organic solvents. They were designed to show sensitive color change properties at a low concentration of vapors at room temperature. They were applied to cotton fabrics as a substrate of the textile-based sensors to examine their sensing properties for nine organic solvents frequently used in semiconductor manufacturing processes, such as trichloroethylene, dimethylacetamide, iso-propanol, methanol, n-hexane, ethylacetate, benzene, acetone, and hexamethyldisilazane. The textile sensor exhibited strong sensing properties of polar solvents rather than non-polar solvents. In particular, the detection of dimethylacetamide was the best, showing a color difference of 15.9 for DMx and 26.2 for DM under 300 ppm exposure. Even at the low concentration of 10 ppm of dimethylacetamide, the color change values reached 7.7 and 13.6, respectively, in an hour. The maximum absorption wavelength of the textile sensor was shifted from 580 nm to 550 nm for DMx and 550 nm to 540 nm for DM, respectively, due to dimethylacetamide exposure. The sensing mechanism was considered to depend on solvatochromism, the aggregational properties of the dyes and the adsorption amounts of the solvent vapors on the textile substrates to which the dyes were applied. Finally, the reusability of the textile sensor was tested for 10 cycles.
RESUMO
The dynamic and reversible changes of coordination numbers between five and six in solution and solid states, based on hypervalent tin(IV)-fused azobenzene (TAz) complexes, are reported. It was found that the TAz complexes showed deep-red emission owing to the hypervalent bond composed of an electron-donating three-center four-electron (3c-4e) bond and an electron-accepting nitrogen-tin (N-Sn) coordination. Furthermore, hypsochromic shifts in optical spectra were observed in Lewis basic solvents because of alteration of the coordination number from five to six. In particular, vapochromic luminescence was induced by attachment of dimethyl sulfoxide (DMSO) vapor to the coordination point at the tin atom accompanied with a crystal-crystal phase transition. Additionally, the color-change mechanism and degree of binding constants were well explained by theoretical calculation. To the best of our knowledge, this is the first example of vapochromic luminescence by using stable and variable coordination numbers of hypervalent bonds.
RESUMO
Leakage of volatile organic compounds (VOCs) is one of the most severe industrial problems, because it can cause environmental pollution, global warming, fire, and explosion. Hence, the visualization of leakage is an essential technology to detect it at an early stage. Molecular crystals, fluorescence color of which can be changed by the exposure to VOCs could potentially serve as the sensing materials for realizing rapid and facile VOC detection. However, these materials usually require harsh conditions, such as heating or a vacuum, to recover their initial phases for reuse. Therefore, it remains a challenge to obtain completely reversible sensing systems without such energy-consuming recycling processes. Herein, the reversible color change of fluorescence from the crystals of a propeller-shaped boron ß-diketiminate complex is reported. The complex was crystallized in distinct crystalline phases having different luminescent colors. Importantly, these phases were interconverted very rapidly (time constant <60â s) and repeatedly upon exposure to the vapors of the appropriate VOCs. The small energy differences between conformers of the complex could lead to this pseudopolymorphic behavior. This finding could be applied for the development of further eco-friendly reversible sensing materials based on four-coordinated boron complexes.
RESUMO
A supramolecular network [H4bdcbpy(NO3)2·H2O] (H4bdcbpy = 1,1'-Bis(3,5-dicarboxybenzyl)-4,4'-bipyridinium) (1) was prepared by a zwitterionic viologen carboxylate ligand in hydrothermal synthesis conditions. The as-synthesized (1) has been well characterized by means of single-crystal/powder X-ray diffraction, elemental analysis, thermogravimetric analysis and infrared and UV-vis spectroscopy. This compound possesses a three-dimensional supramolecular structure, formed by the hydrogen bond and π-π interaction between the organic ligands. This compound shows photochromic properties under UV light, as well as vapochromic behavior upon exposure to volatile amines and ammonia, in which the electron transfer from electron-rich parts to the electron-deficient viologen unit gives rise to colored radicals. Moreover, the intensive intermolecular H-bonding networks in 1 endows it with a proton conductivity of 1.06 × 10-3 S cm-1 in water at 90 °C.
RESUMO
Reaction of [NiCl2 (PnH)4 ] (1) (PnH=6-tert-butyl-pyridazine-3-thione) with NiCl2 affords the binuclear paddlewheel (PW) complex [Ni2 (Pn)4 ] (2). Diamagnetic complex 2 is the first example of a PW complex capable of reversibly binding and releasing NH3 . The NH3 ligand in [Ni2 (Pn)4 (NH3 )] (2â NH3 ) enforces major spectroscopic and magnetic susceptibility changes, thus displaying vapochromic properties (λmax (2)=532â nm, λmax (2â NH3 )=518â nm) and magnetochemical switching (2: S=0; 2â NH3 : S=1). Upon repeated adsorption/desorption cycles of NH3 the PW core remains intact. Compound 2 can be embedded into thin polyurethane films (2P ) under retention of its sensing abilities. Therefore, 2 qualifies as reversible optical probe for ammonia. The magnetochemical switching of 2 and 2â NH3 was studied in detail by SQUID measurements showing that in 2â NH3 , solely the Ni atom coordinated the NH3 molecule is responsible for the paramagnetic behavior.
RESUMO
Organic co-crystal engineering is a promising method to make multifunctional materials. Here, the marriage of macrocyclic chemistry and co-crystal engineering provides a smart strategy to build vapochromic materials. The macrocycle co-crystals (MCCs) were constructed from π-electron rich pillar[5]arene (P5) and an electron-deficient pyromellitic diimide derivative (PDI) on a 10â g scale. MCCs of P5-PDI are in red owing to the formation of a charge-transfer (CT) complex. After solvent removal, a white crystalline solid with a new structure (P5-PDIα) is yielded, which exhibits selective vapochromic responses to volatile organic compounds (VOCs) of haloalkanes, accompanied by color changes from white to red or orange. Powder and single-crystal X-ray diffraction analyses reveal that the color changes are attributed to the vapor-triggered solid-state structural transformation to form CT co-crystals. Coating films of P5 and PDI on glass showed a visible vapochromic behavior with good reversibility.
RESUMO
A series of symmetric squarylium dyes (SQDPA-X) with different halogen (X=F, Cl, Br, I) substituents have been developed. The photophysical properties could be facilely tuned by the halogen modulation effects. The strategy of incorporating different halogen substitutions into AIE active luminogens enables a facile approach for exploring new intriguing organic fluorescent dyes.
RESUMO
A copper iodide complex coordinated by three phosphine ligands with the formula [Cu2 I2 (Ph2 PC2 (C6 H4 )C2 PPh2 )3 ] exhibits solvatochromic and vapochromic luminescence properties. A mechanism based on solvent-dependent molecular motion appears to occur. The highly contrasted response observed upon THF solvent exposure makes this complex an appealing candidate for chemical sensor applications.
RESUMO
Organic micro- and nanostructures are expected to be promising candidates for micro- and nanophotonic materials with desirable properties owing to their low cost, flexible molecular design, and tunable self-assembly. Among these candidates, well-known squaraine dyes (SQs) have rarely been investigated because of their nonfluorescent properties in the solid state and because their optical behavior varies with changes in morphology. In this contribution, two novel 1,2-SQs, SQM and SQB, with strong bright-yellow to red fluorescence emission in the crystalline state, were designed and structured at the molecular level and by solvent adjustment. Their self-assembly behavior was studied, and it was revealed that the SQM assembly provided 1D microrods, whereas 1D microrods (Z-SQBâ CH2 Cl2 ) and 2D microplates (E-SQBâ 2 CH3 OH) could be obtained from SQB assemblies through a solution-based self-assembly method. The varied assembly behaviors of these SQs were attributed to different π-π stacking interactions that resulted in different molecular conformations and packing modes. These assemblies exhibited distinct optical properties, and in particular, SQBâ solvent assemblies showed multiple thermo- and vapochromic effects. Thus, the SQB assemblies are potential fluorescent sensors for organic solvent vapors. More importantly, favorable optical-waveguide properties were observed in these SQ-based microstructures.
RESUMO
Digold metallotweezers whose complex supramolecular landscape is controlled by adding a series of metal cations are described. The metallotweezers have a strong tendency to form interesting supramolecular structures on addition of Tl+ , Ag+ , and Cu+ . The choice of the cation can be used to direct the formation of a designated molecular architecture. The addition of thallium facilitates the formation of a self-aggregated duplex structure in which the cation occupies the cavity of the dimer. The same type of structure is formed when Cu+ is added, and the resulting duplex inclusion complex shows interesting vapochromic properties. This copper-encapsulating system evolves in solution to a 1D helical supramolecular polymer showing multiple aurophilic and Auâ â â Cu interactions, in which the copper cation is bound to several alkynyl ligands of the tweezer. The addition of a small amount of silver cations to the digold tweezer yields a similar type of inclusion dimer complex, but adding an excess of the cation produces new discrete molecules presumably exhibiting multiple Auâ â â Au, Auâ â â Ag, and Agâ â â Ag metallophilic interactions. The differences in the supramolecular structures formed are ascribed to the different tendencies of the metal cations to exhibit interactions with the gold atoms and to coordinate to the alkynyl ligands of the tweezer.
RESUMO
Thin films of styrene copolymers containing fluorescent molecular rotors were demonstrated to be strongly sensitive to volatile organic compounds (VOCs). Styrene copolymers of 2-[4-vinyl(1,1'-biphenyl)-4'-yl]-cyanovinyljulolidine (JCBF) were prepared with different P(STY-co-JCBF)(m) compositions (m% = 0.10-1.00) and molecular weights of about 12,000 g/mol. Methanol solutions of JCBF were not emissive due to the formation of the typical twisted intramolecular charge transfer (TICT) state at low viscosity regime, which formation was effectively hampered by adding progressive amounts of glycerol. The sensing performances of the spin-coated copolymer films (thickness of about 4 µm) demonstrated significant vapochromism when exposed to VOCs characterized by high vapour pressure and favourable interaction with the polymer matrix such as THF, CHCl3 and CH2Cl2. The vapochromic response was also reversible and reproducible after successive exposure cycles, whereas the fluorescence variation scaled linearly with VOC concentration, thus suggesting future applications as VOC optical sensors.