Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Environ Sci Technol ; 58(9): 4056-4059, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393774

RESUMO

Certain per- or polyfluoroalkyl substances [e.g., fluorotelomer alcohols (FtOHs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs)] have sufficient volatility to merit investigation of the vapor intrusion pathway on a site-specific basis, when they occur as subsurface contaminants in sufficient concentrations near occupied buildings. This perspective summarizes some of the evidence that these categories of per- or polyfluoroalkyl substances are volatile and offers specific research questions and objectives, for purposes of further assessing whether FtOHs, FOSAs, and/or FOSEs can pose indoor exposures via soil vapor intrusion and under what circumstances.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Fluorocarbonos/análise , Gases
2.
Environ Res ; 238(Pt 2): 117238, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783324

RESUMO

The potential human health risks associated with soil vapor intrusion and volatile organic compounds (VOCs) exposure were characterized at an industrialized site by the quantification of gaseous VOCs in soil pores using a passive sampling technique. The gaseous tetrachloroethene (PCE) in soil pores varied between 12 and 5,400 µg m-3 showing 3 orders of magnitude variation with dependence on groundwater PCE concentrations. Though the PCE concentration in the air only varied between 0.45 and 1.5 µg m-3 showing negligible variations compared to the variation observed in soil pores. The PCE concentration in the air varied between 0.45 and 1.5 µg m-3. The calculation of fugacity suggested that the PCE in the test site originated from groundwater. Measured PCE in groundwater ranged from 14 to 2,400 times higher than PCE in soil gas. This indicates that conducting a vapor intrusion risk assessment using passive soil gas sampling is critical for accurate risk characterization and assessment. Estimated PCE inhalation cancer risks for street cleaners and indoor residents varied between 10-6 and 10-4 with a low plausible hazard, and between 10-3 and 10-2 with a high risk, respectively. The results of this study demonstrate that passive sampling offers a significantly lower cost and labor-intensive approach compared to traditional methods for assessing pollution distribution in contaminated sites and characterizing risks. This highlights the potential for wider application of passive sampling techniques in environmental studies.


Assuntos
Poluição do Ar em Ambientes Fechados , Água Subterrânea , Poluentes do Solo , Tetracloroetileno , Compostos Orgânicos Voláteis , Humanos , Poluição do Ar em Ambientes Fechados/análise , Solo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Gases , Compostos Orgânicos Voláteis/análise
3.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446664

RESUMO

Vapor intrusion is detrimental for indoor air quality. One of the most common sources of vapor intrusion is soil contaminated with petroleum hydrocarbons. To evaluate the long-term risk from individual exposure to hydrocarbons it is necessary to measure quantitively and reliably an average concentration level of individual pollutants on a monthly or yearly basis. Temporal variability of vapor intrusion from hydrocarbons poses a significant challenge to determination of average exposure and there is a need for reliable long-term integrative sampling. To this end, an analytical method for determination of 10 selected nonmethane hydrocarbons (NMHCs), including hexane, heptane, octane, decane, benzene, toluene, ethyl-benzene, m,p-xylene, o-xylene, and naphthalene, sampled on active triple-bed tubes filled with Carbograph 2, Carbograph 1, and Carboxen 1003 adsorbents was developed and validated. Extensive laboratory studies proved the absence of breakthrough at 50% HR and ambient temperature for experiments lasting up to 28 days and established a safe sampling time/volume of 20 days/114 L when sampling at a low flow rate of around 4 mL min-1. In addition, the developed method includes detailed uncertainty calculations for determination of concentrations. Finally, the method was tested by measuring NMHC concentrations in indoor air at a former industrial site during a 2-month-long field campaign in Lyon. The results of the field campaign suggest that 4-week integrated concentration measurements can be achieved by using active sampling on triple-bed tubes at 4.5 mL min-1.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Petróleo , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Benzeno , Hidrocarbonetos/análise , Petróleo/análise , Gases , Monitoramento Ambiental/métodos
4.
Environ Sci Technol ; 56(15): 10785-10797, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35852516

RESUMO

Per- and polyfluoroalkyl substances (PFAS), butyl carbitol, and corrosion inhibitors are components of aqueous film-forming foams (AFFFs). Volatile (neutral) fluorotelomerization (FT)- and electrochemical fluorination (ECF)-based PFAS, butyl carbitol, and organic corrosion inhibitors were quantified in 39 military specification (MilSpec), non-MilSpec, and alcohol resistant-AFFF concentrates (undiluted) from 1974 to 2010. Fluorotelomer alcohols were found only in FT-based AFFFs and N-methyl- and N-ethyl-perfluoroalkyl sulfonamides, and sulfonamido ethanols were found only in ECF-based AFFFs. Neutral PFAS and benzotriazole, 4-methylbenzotriazole, and 5-methybenzotriazole occurred at mg/L levels in the AFFFs, while butyl carbitol occurred at g/L levels. Neutral PFAS concentrations in indoor air due to vapor intrusion of a nearby undiluted AFFF release are estimated to be anywhere from 2 to >10 orders of magnitude higher than documented background indoor air concentrations. Estimated butyl carbitol and organic corrosion inhibitor concentrations were lower than and comparable to indoor concentrations recently measured, respectively. The wide range of neutral PFAS concentrations and Henry's law constants indicate that field, soil-gas measurements are needed to validate the estimations. Co-discharged butyl carbitol likely contributes to oxygen depletion in AFFF-impacted aquifers and may hinder the natural PFAS aerobic biotransformation. Organic corrosion inhibitors in AFFFs indicate that these are another source of corrosion inhibitors in the environment.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Aerossóis , Corrosão , Etilenoglicóis , Fluorocarbonos/análise , Gases , Água , Poluentes Químicos da Água/análise
5.
Ecotoxicol Environ Saf ; 242: 113874, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35843107

RESUMO

Traditional soil vapor intrusion (VI) models usually rely on preset conceptual scenarios, simplifying the influences of limiting environmental covariates in determining indoor attenuation factors relative to subsurface sources. This study proposed a technical framework and applied it to predict VI attenuation factors based on site-specific parameters recorded in the United States Environmental Protection Agency (USEPA)'s and the California Environmental Protection Agency (CalEPA)'s VI databases, which can overcome the limitations of traditional VI models. We examined the databases with multivariate analysis of variance to identify effective covariates, which were then employed to develop VI models with three machine learning algorithms. The results of multivariate analysis show that the effective covariates include soil texture, source depth, foundation type, lateral separation, surface cover, and land use. Based on these covariates, the predicted attenuation factors by these new models are generally within one order of magnitude of the observations recorded in the databases. Then the developed models were employed to generate the generic indoor attenuation factors to subsurface vapor (i.e., the 95th percentile of selected dataset), the values of which are different between the USEPA's and CalEPA's databases by one order of magnitude, although comparable to recommendations by the USEPA and literature, respectively. Such a difference may reflect the significant regional disparity in factors such as building structures or operational conditions (e.g., indoor air exchange rates), which necessitates generating generic VI attenuation factors on a state-specific basis. This study provides an alternative for VI risk screens on a site-specific basis, especially in states with a good collection of datasets. Although the proposed technical framework is used for the VI databases, it can be equally applied to other environmental science problems.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , Gases , Aprendizado de Máquina , Análise Multivariada , Solo/química , Estados Unidos , Volatilização
6.
J Environ Manage ; 319: 115776, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982574

RESUMO

Chlorinated ethene (CE) contaminants are widespread in groundwater, and the occurrence of vinyl chloride (VC), among others, is a well-known issue due to its mobility, persistence, and carcinogenicity. Human exposure to VC may occur through inhalation after soil vapor intrusion into buildings at sites with shallow underground contamination. Soil vapor intrusion risk is traditionally assessed through indoor air and sub-slab sampling (direct evidence) or soil gas and groundwater surveys (indirect evidence). Phytoscreening (sampling and analysis of tree trunk matrices) was proven as a cost-effective alternative technique to indirectly detect shallow underground contamination by higher chlorinated ethenes and subsequent vapor intrusion risk. However, the technique has appeared barely capable to screen for the lower chlorinated VC, likely due to its fugacity and aerobic bio-degradability, with only one literature record to date showing successful detection in trees. We applied phytoscreening at two sites with severe CE contamination nearby residential buildings caused by illegal dumping of chlorinated pitches from petrochemical productions. The two sites show variable amounts of VC in the shallow groundwater (1e2 to 1e4 µg/L), posing potential sanitary risk issues. Former soil gas surveys did not detect VC in the vadose zone. At both sites, we sampled trunk micro-cores and trunk gas from poplar trees close to contaminated piezometers in different seasons. VC was detected in several instances, disproving the shared literature assumption of the inefficacy of phytoscreening towards this compound. Factors influencing the detectability of VC and other CEs in trees were analyzed through linear regressions. Two different conceptual models were proposed to explain the effective uptake of VC by trees at the two sites, i.e., direct uptake of contaminated groundwater at the first site and uptake of VC from an anoxic vadose zone at the second site. In planta reductive dechlorination of CEs is not expected based on current literature knowledge. Thus, the detection of VC in trunks would indicate its occurrence in the shallow underground, suggesting higher screening effectiveness of phytoscreening compared to soil gas; this has implications for indirect vapor intrusion risk assessment.


Assuntos
Água Subterrânea , Cloreto de Vinil , Poluentes Químicos da Água , Biodegradação Ambiental , Gases/análise , Água Subterrânea/química , Humanos , Solo , Árvores/química , Cloreto de Vinil/análise , Poluentes Químicos da Água/análise
7.
Build Environ ; 1792020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321711

RESUMO

Building materials that are found in the indoor environment can play an important role in determining indoor air quality. Previous studies have recognized that building materials are potential sinks/sources of indoor volatile organic compounds (VOCs), but their uptake under extremely low concentrations has not been extensively studied. This study has characterized the capacities of various building materials for adsorption of trichloroethylene (TCE), which is a contaminant of significant concern in vapor intrusion scenarios. The capacities of more than 20 building materials were established at a TCE concentration of 1.12 ppbv (and for selected materials at concentrations up to 12.5 ppbv). This was achieved using a thermal desorption method. Room temperature isotherms for glass wool, polyethylene, nylon carpet, drywall, printer paper, leather, and cinderblock were measured. The results showed that the sorptive capacities of the building materials were at nanograms per gram levels; cinderblock had the largest sorption capacity among all the building materials tested and this is believed to indicate that solid carbon content of materials plays a significant role during the sorption process. TCE desorption from selected building materials was also investigated at room temperature and 100°C.

8.
Environ Geochem Health ; 40(2): 887-902, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29022193

RESUMO

Human health risk assessment at hydrocarbon-contaminated sites requires a critical evaluation of the exposure pathways of volatile organic compounds including assessments of vapor exposure in indoor air. Although there are a number of vapor intrusion models (VIM) currently available, they rarely reproduce actual properties of soils in the vadose zone. At best, users of such models assume averaged parameters for the vadose zone based on information generated elsewhere. The objective of this study was to develop a one-dimensional steady-state VIM, indoorCARE™ model, that considers vertical spatial variations of the degree of saturation (or effective air-filled porosity) and temperature of the vadose zone. The indoorCARE™ model was developed using a quasi-analytical equation that (1) solves the coupled equations governing soil-water movement driven by pressure head and a soil heat transport module describing conduction of heat and (2) provides a VIM that accommodates various types of conceptual site model (CSM) scenarios. The indoorCARE™ model is applicable to both chlorinated hydrocarbon and petroleum hydrocarbon (PHC) contaminated sites. The model incorporates biodegradations of PHCs at a range of CSM scenarios. The results demonstrate that predictions of indoor vapor concentrations made with the indoorCARE™ model are close to those of the J&E and BioVapor models under homogeneous vadose zone conditions. The newly developed model under heterogeneous vadose zone conditions demonstrated improved predictions of indoor vapor concentrations. The research study presented a more accurate and more realistic way to evaluate potential human health risks associated with the soil-vapor-to-indoor-air pathways.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Modelos Teóricos , Poluentes do Solo/análise , Compostos Orgânicos Voláteis/química , Temperatura Alta , Humanos , Hidrocarbonetos/análise , Saúde da População , Pressão , Medição de Risco
9.
Water Resour Res ; 53(5): 4499-4513, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-29081548

RESUMO

In this work, we present an analytical chlorinated vapor intrusion (CVI) model that can estimate source-to-indoor air concentration attenuation by simulating two-dimensional (2-D) vapor concentration profile in vertically heterogeneous soils overlying a homogenous vapor source. The analytical solution describing the 2-D soil gas transport was obtained by applying a modified Schwarz-Christoffel mapping method. A partial field validation showed that the developed model provides results (especially in terms of indoor emission rates) in line with the measured data from a case involving a building overlying a layered soil. In further testing, it was found that the new analytical model can very closely replicate the results of three-dimensional (3-D) numerical models at steady state in scenarios involving layered soils overlying homogenous groundwater sources. By contrast, by adopting a two-layer approach (capillary fringe and vadose zone) as employed in the EPA implementation of the Johnson and Ettinger model, the spatially and temporally averaged indoor concentrations in the case of groundwater sources can be higher than the ones estimated by the numerical model up to two orders of magnitude. In short, the model proposed in this work can represent an easy-to-use tool that can simulate the subsurface soil gas concentration in layered soils overlying a homogenous vapor source while keeping the simplicity of an analytical approach that requires much less computational effort.

10.
J Environ Manage ; 204(Pt 2): 783-792, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237219

RESUMO

Our understanding of vapor intrusion has evolved rapidly since the discovery of the first high profile vapor intrusion sites in the late 1990s and early 2000s. Research efforts and field investigations have improved our understanding of vapor intrusion processes including the role of preferential pathways and natural barriers to vapor intrusion. This review paper addresses recent developments in the regulatory framework and conceptual model for vapor intrusion. In addition, a number of innovative investigation methods are discussed.


Assuntos
Gases , Modelos Teóricos
11.
Regul Toxicol Pharmacol ; 80: 125-33, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27346665

RESUMO

A method for determining a safety range for non-cancer risks is proposed, similar in concept to the range used for cancer in the management of waste sites. This safety range brings transparency to the chemical specific Reference Dose or Concentration by replacing their "order of magnitude" definitions with a scientifically-based range. EPA's multiple RfCs for trichloroethylene (TCE) were evaluated as a case study. For TCE, a multi-endpoint safety range was judged to be 3 µg/m(3) to 30 µg/m,(3) based on a review of kidney effects found in NTP (1988), thymus effects found in Keil et al. (2009) and cardiac effects found in the Johnson et al. (2003) study. This multi-endpoint safety range is derived from studies for which the appropriate averaging time corresponds to different exposure durations, and, therefore, can be applied to both long- and short-term exposures with appropriate consideration of exposure averaging times. For shorter-term exposures, averaging time should be based on the time of cardiac development in humans during fetal growth, an average of approximately 20-25 days.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/efeitos adversos , Locais de Resíduos Perigosos , Resíduos Perigosos/efeitos adversos , Tricloroetileno/efeitos adversos , Animais , Técnicas de Apoio para a Decisão , Relação Dose-Resposta a Droga , Monitoramento Ambiental/normas , Poluentes Ambientais/análise , Resíduos Perigosos/análise , Humanos , Exposição por Inalação/efeitos adversos , Valores de Referência , Medição de Risco , Gestão da Segurança , Fatores de Tempo , Testes de Toxicidade , Tricloroetileno/análise
12.
Build Environ ; 96: 178-187, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28090133

RESUMO

There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

13.
Artigo em Inglês | MEDLINE | ID: mdl-26259926

RESUMO

Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ≥ 0.012 µg L(-1)) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (P = 0.0002 and P = 0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 µg m(-3) were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (P < .0001; 95% CI 10.4-236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting.


Assuntos
Exposição Ambiental/análise , Tricloroetileno/análise , Adulto , Poluição do Ar em Ambientes Fechados/análise , Características da Família , Feminino , Gases/química , Água Subterrânea/química , Humanos , Limite de Detecção , Masculino , Solo/química , Tricloroetileno/sangue , Volatilização , Água/química
14.
Indoor Air ; 24(3): 272-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24134144

RESUMO

UNLABELLED: Accumulation of volatile organic compounds (VOCs) that migrate inside buildings from underlying contaminated soils and groundwater poses human health risks. VOCs intrusion into buildings driven only by diffusion was reproduced by a laboratory-scale experiment. Effective diffusion coefficients and fluxes of a group of selected chlorinated solvents and BTEX through two types of isolation material - that is, concrete (anhydrite screed) and geo-membrane - were estimated. The laboratory experiment indicated that the diffusive transfer of pollutants through sediments into indoor air of buildings cannot be prevented by building sealing material, but it could be attenuated to a certain degree by concrete and up to non-detectable levels by the geo-membrane. Effective diffusion coefficients through concrete and geo-membrane ranged from 3.17 × 10(-2) to 5.90 × 10(-5) cm(2) /s and from 5.47 × 10(-6) to 5.50 × 10(-8) cm(2) /s, respectively. PRACTICAL IMPLICATIONS: The vapor intrusion of volatile organic compounds (VOCs) into buildings has special relevance in human health risk assessment. Prediction of indoor air VOCs concentration by applying numerical or analytical models eventually fails due to the lack of input parameters, such as the VOCs effective diffusion coefficient through building material used as foundation or isolation material. Passive migration of VOCs from contaminated sites into indoor air through construction and isolation materials has not been extensively investigated. Our findings showed that the mass flux through building material is not negligible, but it could be reduced partly, and to a minimum, with the utilization of concrete and geo-membranes, respectively. As a result of our investigation, effective diffusion coefficients of BTEX and chlorinated solvents, as well as the correlation between specific compounds' parameters and the estimated effective diffusion coefficient, are provided.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Materiais de Construção , Compostos Orgânicos Voláteis/química , Difusão , Humanos
15.
Environ Model Softw ; 54: 1-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639604

RESUMO

The transport of volatile organic vapors from subsurface to building involves complex processes. Since the release of the draft subsurface vapor intrusion guidance by the U.S. EPA in 2002, great progress has been made in understanding these processes in various field and modeling studies. In these studies, the importance of analyzing and predicting the subslab volatile organic vapor concentration was noted. To quantitatively predict subslab vapor concentration is, however, complicated, especially for sites located over non-uniform vapor sources. This manuscript provides a method to estimate the vapor concentration beneath the subslab using a closed-form analytical solution that can approximate full three-dimensional modeling results, but does not require the use of advanced numerical simulation. This method allows prediction of the subslab vapor concentration profile beneath the slab for various source configurations, given inputs of building slab dimension and source depth. The interaction of the influences of non-uniform source and the slab capping effect on the subslab vapor concentration is addressed.

16.
Sci Total Environ ; 930: 172830, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38692313

RESUMO

Recent reports show a rise in instances where municipal networks, such as sewer lines, serve as pathways for vapor intrusion (VI), enabling volatile organic compounds (VOCs) vapors to travel along these networks. These VOCs pose potential health risks to occupants of buildings connected to these networks. Currently, there's a lack of specific technical or regulatory guidance on identifying and assessing the VI risk associated with sewer as preferential VI pathways. This critical review summarizes key findings from studies and site investigations related to sewer VI pathways. These findings cover background VOCs concentration levels in sewers, updates to site conceptual models, advances in sewer sampling techniques, innovative tools for identifying and characterizing sewer VI, and practices for assessing and mitigating sewer VI risk. While significant improvements have been made towards understanding how municipal pipeline networks act as VI pathways, more research is still needed to develop strategies for investigating sites and assessing risks associated with "pipeline VI pathways". Future research could focus on the development of "pipeline VI pathways" data set, the improvement and validation of investigation tools, and improving the understanding of VOCs transportation mechanisms within these "pipeline VI pathways".

17.
Chemosphere ; 361: 142551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852280

RESUMO

The fate of volatile organic compounds (VOC) vapors in the unsaturated zone is the basis for evaluating the natural attenuation potential and vapor intrusion risk. Microcosm and column experiments were conducted to study the effects chemical speciation and soil types/properties on the fate of petroleum VOCs in unsaturated zone. The biodegradation and total attenuation rates of the seven VOCs obtained by microcosm experiments in black soil and yellow earth were also generally higher than those in floodplain soil, lateritic red earth, and quartz sand. The VOC vapors in floodplain soil, lateritic red earth, and quartz sand showed slow total attenuation rates (<0.3 d-1). N-pentane, methylcyclopentane, and methylcyclohexane showed lower biodegradation rates than octane and three monoaromatic hydrocarbons. Volatilization into the atmosphere and biodegradation are two important natural attenuation paths for VOCs in unsaturated soil columns. The volatilization loss fractions of different volatile hydrocarbons in all five unsaturated soils were generally in the order: n-pentane (93.5%-97.8%) > methylcyclopentane (77.2%-85.5%) > methylcyclohexane (53.5%-69.2%) > benzene (17.1%-73.3%) > toluene (0-45.7%) > octane (1.9%-34.2%) > m-xylene (0-5.7%). The fractions by volatilization into the atmosphere of all seven hydrocarbons in quartz sand, lateritic red earth, and floodplain soil were close and higher compared to the yellow earth and black soil. Overall, this study illustrated the important roles chemical speciation and soil properties in determining the vapor-phase transport and natural attenuation of VOCs in the unsaturated zone.


Assuntos
Biodegradação Ambiental , Petróleo , Poluentes do Solo , Solo , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Petróleo/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Adsorção , Volatilização , Pentanos/química , Pentanos/análise , Octanos/química , Tolueno/química , Tolueno/análise , Benzeno/análise , Benzeno/química
18.
Sci Total Environ ; 939: 173595, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810738

RESUMO

Several studies have reported vapor intrusion (VI) occurring when volatile organic compound (VOC) vapors are transported through subsurface piping systems into building spaces (e.g. conduit VI). Site-specific risk assessment and risk management practices are complicated and evolving for conduit VI, especially at large hazardous waste sites, like Superfund sites, where many stakeholders are involved and have varied interests. Here, we propose a social ecological system (SES) framework as a decision-making tool to inform risk mitigation decisions. We demonstrate the SES framework using field data associated with a Superfund site near San Francisco, California. We evaluate sewer invert elevation and groundwater elevation data, as well as pre- and post- mitigation VOC concentration data within a sewer system. Unexpectedly, the sewer located above the groundwater table was determined to be a potential source of conduit VI risks. The SES framework describes how typical stakeholders associated with the site can affect and be affected by mitigation activities. It informs decisions about mitigation implementation and long-term operation efficacy by considering stakeholder roles and interests. Ultimately, gas siphons were selected as the mitigation technology for the example site. To date, approximately 6 gas siphons have been installed to mitigate conduit VI risks throughout the community. Collectively, our findings advance risk management decisions and highlight key considerations for risk mitigation approaches at hazardous waste sites, including Superfund sites, especially where VI risks are a concern.

19.
Sci Total Environ ; 912: 169464, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123082

RESUMO

No field study has provided a detailed characterization of the molecular composition and spatial distribution of a vadose zone plume of petroleum volatile organic compounds (VOCs), which is critical to improve the current understanding of petroleum VOC transport and fate. This is study reports a high-resolution analysis of two distinct vapor plumes emanating from two different light non-aqueous phase liquid (LNAPL) sources (an aliphatic-rich LNAPL for Zone #1vs an aromatic-rich LNAPL for Zone #2) at a large petrochemical site. Although deep soil vapor signatures were similar to the source zone LNAPL signatures, the composition of the shallow soil vapors reflected preferential attenuation of certain hydrocarbons over others during upward transport in the vadose zone. Between deeper and shallower soil gas samples, attenuation of aromatics was observed under all conditions, but important differences were observed in attenuation to aliphatic compound classes. Attenuation of all aliphatic compounds was observed under aerobic conditions but little attenuation of any aliphatics was observed under anoxic conditions without methane. In contrast, under methanogenic conditions, paraffins attenuated more than isoparaffins and naphthenes. These results suggest that isoparafins and naphthenes may present more of a vapor intrusion risk than benzene or other aromatic hydrocarbons commonly considered to be petroleum vapor intrusion risk drivers. While the overall vapor composition changed significantly within the vadose zone, diagnostic ratios of relatively recalcitrant alkylcyclopentanes were preserved in shallow soil vapor samples. These alkylcyclopentanes may be useful for distinguishing between petroleum vapor intrusion and other sources of petroleum VOCs detected in indoor air.

20.
J Hazard Mater ; 464: 133025, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995636

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are used in various industrial products; however, they pose serious health risks. In this study, soil, soil gas, and groundwater samples were collected at a PFAS manufacturing facility in New Jersey, USA, to determine the presence and distribution of PFASs from the soil surface to groundwater and at various distances from the presumed source. Fluorotelomer alcohols (FTOHs) were detected in soil (< 0.26-36.15 ng/g) and soil gas (160-12,000 E µg/m3), while perfluorinated carboxylic acids (PFCAs) were found in soil (4.3-810 ng/g), soil gas (<0.10-180 µg/m3), and groundwater (37-49 µg/L). FTOH and PFCA concentrations decreased as the distance from the presumed source increased, suggesting that PFCAs are likely to migrate in groundwater, whereas FTOHs primarily move in the vapor phase. The presence of PFAS in the groundwater, soil, and soil gas samples indicate its potential for vapor intrusion; thus, some PFAS may contribute to indoor air inhalation exposure. To the best of our knowledge, this is the first report on the quantification of volatile PFAS in soil gas at a PFAS manufacturing facility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA