RESUMO
Aims: This study aims to explore the potential role of vascular endothelial growth factor-B (VEGF-B) in the pathogenesis of diabetic peripheral neuropathy (DPN). The expression of VEGFRs were reanalysed by using gene arrays of peripheral nerve samples from mouse models of DPN retrieved from the GEO database. 213 T2D patients as well as 31 healthy individuals were recruited. The serum VEGF-B was detected and its relationship with DPN was analysed. The elevated VEGFR1 was the only change of VEGFR gene expression in the peripheral nerve from mouse models of DPN. The level of serum VEGF-B in T2D patients with DPN was higher than that in T2D patients without DPN and healthy people. Analysis of correlation and binary logistic regression confirmed that the increased serum VEGF-B level was an independent risk factor of DPN in T2D patients. VEGF-B-VEGFR1 signaling pathway may be involved in the development of DPN.
RESUMO
OBJECTIVE: Coronary heart disease (CHD) is a disorder resulting from organic and functional coronary artery stenosis (CAS), thus causing reduced oxygenated blood in the heart. miRNAs are useful biomarkers in the diagnosis of atherosclerosis, CHD, and acute coronary syndrome. Vascular endothelial growth factor (VEGF) is closely related to CHD. This study explored the correlation of miR-296 and VEGF-B expression levels in peripheral blood with CAS degree in CHD patients. METHODS: Totally 220 CHD patients were enrolled and classified into mild-(71 cases)/moderate-(81 cases)/severe-CAS (68 cases) groups, with another 80 healthy cases as controls. The serum miR-296 and VEGF-B expression levels were detected using reverse transcription quantitative polymerase chain reaction. The correlation between miR-296 and CAS-related indexes was assessed via Pearson analysis. The binding relationship of miR-296 and VEGF-B was first predicted and their correlation was further analyzed via the Pearson method. The clinical diagnostic efficacy of miR-296 or VEGF-B on CAS degree was evaluated by the receiver operating characteristic curve. RESULTS: Serum miR-296 was downregulated in CHD patients and was the lowest in patients with severe-CAS. miR-296 was negatively-correlated with high-sensitivity C-reactive protein, brain natriuretic peptide, and cardiac troponin I. miR-296 targeted VEGF-B. VEGF-B was upregulated in CHD patients and inversely-related to miR-296. Low expression of miR-296 and high expression of VEGF-B both had high clinical diagnostic values on CAS degree in CHD patients. miR-296 combined with VEGF-B increased the diagnostic value on CAS. CONCLUSION: Low expression of miR-296 combined with high expression of its target VEGF-B predicts CAS degree in CHD patients.
Assuntos
Doença da Artéria Coronariana , Estenose Coronária , MicroRNAs , Humanos , Fator B de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular , Estenose Coronária/complicações , BiomarcadoresRESUMO
Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of Vegfb in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the Vegfb promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.
Assuntos
Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Crescimento/fisiologia , Histonas/metabolismo , Músculo Esquelético/metabolismo , Processamento de Proteína Pós-Traducional/genética , Fator B de Crescimento do Endotélio Vascular/fisiologia , Animais , Restrição Calórica/efeitos adversos , Técnicas de Silenciamento de Genes , Crescimento/genética , Código das Histonas/genética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Transgênicos , Fator B de Crescimento do Endotélio Vascular/genéticaRESUMO
The pro-survival effect of VEGF-B has been documented in different in vivo and in vitro models. We have previously shown an enhanced VEGF-B expression in response to candesartan treatment after focal cerebral ischemia. In this study, we aimed to silence VEGF-B expression to assess its contribution to candesartan's benefit on stroke outcome. Silencing VEGF-B expression was achieved by bilateral intracerebroventricular injections of lentiviral particles containing short hairpin RNA (shRNA) against VEGF-B. Two weeks after lentiviral injections, rats were subjected to either 90 min or 3 h of middle cerebral artery occlusion (MCAO) and randomized to intravenous candesartan (1 mg/kg) or saline at reperfusion. Animals were sacrificed at 24 or 72 h and brains were collected and analyzed for hemoglobin (Hb) excess and infarct size, respectively. Functional outcome at 24, 48 and 72 h was assessed blindly. Candesartan treatment improved neurobehavioral and motor function, and decreased infarct size and Hb. While silencing VEGF-B expression diminished candesartan's neuroprotective effect, candesartan-mediated vascular protection was maintained even in the absence of VEGF-B suggesting that this growth factor is not the mediator of candesartan's vascular protective effects. However, VEGF-B is a mediator of neuroprotection achieved by candesartan and represents a potential drug target to improve stroke outcome. Further studies are needed to elucidate the underlying molecular mechanisms of VEGF-B in neuroprotection and recovery after ischemic stroke.
Assuntos
Isquemia Encefálica/genética , Infarto da Artéria Cerebral Média/genética , Fator B de Crescimento do Endotélio Vascular/genética , Animais , Benzimidazóis/farmacologia , Compostos de Bifenilo , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Tetrazóis/farmacologiaRESUMO
Vascular endothelial growth factor B (VEGFB) is highly expressed in metabolically active tissues, such as the heart and skeletal muscle, suggesting a function in maintaining oxidative metabolic and contractile function in these tissues. Multiple models of heart failure have indicated a significant drop in VEGFB. However, whether there is a role for decreased VEGFB in diabetic cardiomyopathy is currently unknown. Of the VEGFB located in cardiomyocytes, there is a substantial and readily releasable pool localized on the cell surface. The immediate response to high glucose and the secretion of endothelial heparanase is the release of this surface-bound VEGFB, which triggers signaling pathways and gene expression to influence endothelial cell (autocrine action) and cardiomyocyte (paracrine effects) survival. Under conditions of hyperglycemia, when VEGFB production is impaired, a robust increase in vascular endothelial growth factor receptor (VEGFR)-1 expression ensues as a possible mechanism to enhance or maintain VEGFB signaling. However, even with an increase in VEGFR1 after diabetes, cardiomyocytes are unable to respond to VEGFB. In addition to the loss of VEGFB production and signaling, evaluation of latent heparanase, the protein responsible for VEGFB release, also showed a significant decline in expression in whole hearts from animals with chronic or acute diabetes. Defects in these numerous VEGFB pathways were associated with an increased cell death signature in our models of diabetes. Through this bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes (which release VEGFB), this growth factor could provide the diabetic heart protection against cell death and may be a critical tool to delay or prevent cardiomyopathy.NEW & NOTEWORTHY We discovered a bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes [which release vascular endothelial growth factor B (VEGFB)]. VEGFB promoted cell survival through ERK and cell death gene expression. Loss of VEGFB and its downstream signaling is an early event following hyperglycemia, is sustained with disease progression, and could explain diabetic cardiomyopathy.
Assuntos
Apoptose , Cardiomiopatias Diabéticas/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Comunicação Autócrina , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Cardiomiopatias Diabéticas/induzido quimicamente , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Células Endoteliais/enzimologia , Glucuronidase/metabolismo , Masculino , Miocárdio/patologia , Comunicação Parácrina , Ratos Wistar , Estreptozocina , Fator B de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
PURPOSE: To detect plasma vascular endothelial growth factor B (VEGF-B) in individuals with different glucose tolerance and investigate the relationship between plasma VEGF-B levels and the first phase of glucose-stimulated insulin secretion. METHODS: A cross-sectional study was conducted involving 45 patients with newly diagnosed type 2 diabetes mellitus (T2DM), 37 patients with impaired glucose regulation (IGR), and 39 Normal glucose tolerance (NGT) subjects, all of whom underwent intravenous glucose tolerance test. Plasma VEGF-B levels were assayed by ELISA. The first phase of insulin secretion was evaluated by acute insulin response (AIR), the area under the curve of the first-phase (0-10 min) insulin secretion (AUC) and glucose disposition index (GDI). RESULTS: The T2DM and IGR groups had higher plasma VEGF-B levels than the NGT group (P < 0.01). Plasma VEGF-B levels were negatively correlated with AIR, AUC, GDI, HOMA-ß (P < 0.01), and positively correlated with plasma glucose, HbA1c, triglyceride, free fatty acid (FFA), fasting insulin, and HOMA-IR (P < 0.01). Logistic regression analysis revealed that higher VEGF-B levels [145.59-180.07 pg/ml, OR 3.55 (95% CI 1.05-12.02) and >180.07 pg/ml, OR 3.64 (95% CI 1.16-11.42)] were related to a greater probability of ß-cell hypofunction, compared with low VEGF-B levels (<145.59 pg/ml). After adjusting for triglyceride or FFA, the association between VEGF-B levels and ß-cell hypofunction disappeared (P > 0.05). CONCLUSIONS: Our study provides evidence that plasma VEGF-B levels were higher in patients with newly diagnosed T2DM, and were strongly associated with glucose and lipid metabolism and the first-phase insulin secretion function of ß-cells. VEGF-B may be involved in the mechanism of ß-cell dysfunction in T2DM.
Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Glucose/farmacologia , Células Secretoras de Insulina/patologia , Fator B de Crescimento do Endotélio Vascular/sangue , Estudos Transversais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Teste de Tolerância a Glucose , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Edulcorantes/farmacologiaRESUMO
OBJECTIVES: To prepare recombinant tPep-(vascular endothelial growth factor) VEGF-B and assess its biological activity. RESULTS: This new VEGF fusion protein was constructed using a targeting peptide and prepared using E.coli. The tPep-VEGF-B was refolded from inclusion bodies and purified using affinity chromatography. Its bioactivity was determined in vitro using proliferation assay and wounding healing assay, and in vivo in zebrafish. By using the optimized downstream process, recombinant tPep-VEGF-B can be obtained with a purity of >90 % and a yield of 80 mg protein/l culture medium. The refolded protein is highly effective in promoting cell migration in vitro and in enhancing angiogenesis in vivo. CONCLUSION: We have constructed a new VEGF fusion protein with potential therapeutic application in treating metabolic diseases.
Assuntos
Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Cicatrização/efeitos dos fármacos , Peixe-ZebraRESUMO
Vascular endothelial growth factor B (VEGFB), a member of the VEGF family, exhibits limited angiogenic activity in mammals but plays an unexpected role in targeting lipids to peripheral tissues. However, its role in lipid metabolism in fish is unknown. In this study, the vegfb gene was cloned and characterized from spotted sea bass (Lateolabrax maculatus). It encodes 254 amino acids and possesses the typical characteristics of the Vegfb family, demonstrating high homology with those from other vertebrate species. The vegfb gene exhibits the highest expression levels in the liver, followed by the gills, intestine, and adipose tissues in spotted sea bass. In vivo, high-lipid diets decreased vegfb expression and increased lipid deposition in liver of fish. In vitro, palmitic acid + oleic acid treatment or vegfb knockdown significantly increased TG and TC contents, promoting lipid droplet deposition in hepatocytes. Vegfb overexpression has the opposite effects, inhibiting lipid deposition and downregulating fatty acid transport and adipogenesis genes. In contrast, the vegfb knockdown significantly upregulated the expression levels of c/ebpα, plin2, and dgat1 (P < 0.05). These results demonstrate that Vegfb may play an important role in reducing lipid deposition by regulating fatty acid transport and adipogenesis in the hepatocytes of spotted sea bass.
Assuntos
Bass , Metabolismo dos Lipídeos , Fator B de Crescimento do Endotélio Vascular , Animais , Bass/genética , Bass/metabolismo , Metabolismo dos Lipídeos/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Clonagem Molecular , Sequência de Aminoácidos , Filogenia , Fígado/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Adipogenia/genéticaRESUMO
Adipokines play key roles in adaptive thermogenesis of beige adipocytes, though its detailed regulatory mechanisms are not fully understood. In the present study, we identify a critical function of vascular endothelial growth factor B (VEGFB)/vascular endothelial growth factor receptor 1 (VEGFR1) signaling in improving thermogenesis in white adipose tissue (WAT). In mouse subcutaneous WAT (scWAT), thermogenesis activation leads to the up-regulation of VEGFB in adipocytes and its receptor VEGFR1 in macrophages. Ablation of adipocyte VEGFB results in deficiency in murine WAT browning. Meanwhile, supplementation of VEGFB promotes WAT thermogenesis, but this effect is blocked by knockout of macrophage VEGFR1. Mechanistic studies show that the VEGFB-activated VEGFR1 inhibits p38 MAPK signaling through its dissociation with receptor for activated C kinase 1, thereby preventing norepinephrine transporter (solute carrier family 6 member 2) and norepinephrine-degrative monoamine oxidase a mediated norepinephrine clearance in macrophages. Our findings demonstrate that VEGFB/VEGFR1 circuit contributes to the WAT thermogenesis.
RESUMO
BACKGROUND: Impaired glucose tolerance (IGT) is a homeostatic state between euglycemia and hyperglycemia and is considered an early high-risk state of diabetes. When IGT occurs, insulin sensitivity decreases, causing a reduction in insulin secretion and an increase in glucagon secretion. Recently, vascular endothelial growth factor B (VEGFB) has been demonstrated to play a positive role in improving glucose metabolism and insulin sensitivity. Therefore, we constructed a mouse model of IGT through high-fat diet feeding and speculated that VEGFB can regulate hyperglycemia in IGT by influencing insulin-mediated glucagon secretion, thus contributing to the prevention and cure of prediabetes. AIM: To explore the potential molecular mechanism and regulatory effects of VEGFB on insulin-mediated glucagon in mice with IGT. METHODS: We conducted in vivo experiments through systematic VEGFB knockout and pancreatic-specific VEGFB overexpression. Insulin and glucagon secretions were detected via enzyme-linked immunosorbent assay, and the protein expression of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) was determined using western blot. Further, mRNA expression of forkhead box protein O1, phosphoenolpyruvate carboxykinase, and glucose-6 phosphatase was detected via quantitative polymerase chain reaction, and the correlation between the expression of proteins was analyzed via bioinformatics. RESULTS: In mice with IGT and VEGFB knockout, glucagon secretion increased, and the protein expression of PI3K/AKT decreased dramatically. Further, in mice with VEGFB overexpression, glucagon levels declined, with the activation of the PI3K/AKT signaling pathway. CONCLUSION: VEGFB/vascular endothelial growth factor receptor 1 can promote insulin-mediated glucagon secretion by activating the PI3K/AKT signaling pathway to regulate glucose metabolism disorders in mice with IGT.
RESUMO
Nonalcoholic fatty liver disease (NAFLD) refers to fatty liver disease caused by liver injury factors other than alcohol. The disease is characterized by diffuse fat infiltration, including simple steatosis (no inflammatory fat deposition), nonalcoholic fatty hepatitis, liver fibrosis, and so on, which may cause liver cirrhosis, liver failure, and even liver cancer in the later stage of disease progression. At present, the pathogenesis of NAFLD is still being studied. The "two-hit" theory, represented by lipid metabolism disorder and inflammatory reactions, is gradually enriched by the "multiple-hit" theory, which includes multiple factors, such as insulin resistance and adipocyte dysfunction. In recent years, vascular endothelial growth factor B (VEGFB) has been reported to have the potential to regulate lipid metabolism and is expected to become a novel target for ameliorating metabolic diseases, such as obesity and type 2 diabetes. This review summarizes the regulatory role of VEGFB in the onset and development of NAFLD and illustrates its underlying molecular mechanism. In conclusion, the signaling pathway mediated by VEGFB in the liver may provide an innovative approach to the diagnosis and treatment of NAFLD.
RESUMO
Background: Wound management of diabetic foot ulcers (DFUs) is a complex and challenging task, and existing strategies fail to meet clinical needs. Therefore, it is important to develop novel drug candidates and discover new therapeutic targets. However, reports on peptides as molecular probes for resolving issues related to DFUs remain rare. This study utilized peptide RL-QN15 as an exogenous molecular probe to investigate the underlying mechanism of endogenous non-coding RNA in DFU wound healing. The aim was to generate novel insights for the clinical management of DFUs and identify potential drug targets. Methods: We investigated the wound-healing efficiency of peptide RL-QN15 under diabetic conditions using in vitro and in vivo experimental models. RNA sequencing, in vitro transfection, quantitative real-time polymerase chain reaction, western blotting, dual luciferase reporter gene detection, in vitro cell scratches, and cell proliferation and migration assays were performed to explore the potential mechanism underlying the promoting effects of RL-QN15 on DFU repair. Results: Peptide RL-QN15 enhanced the migration and proliferation of human immortalized keratinocytes (HaCaT cells) in a high-glucose environment and accelerated wound healing in a DFU rat model. Based on results from RNA sequencing, we defined a new microRNA (miR-4482-3p) related to the promotion of wound healing. The bioactivity of miR-4482-3p was verified by inhibiting and overexpressing miR-4482-3p. Inhibition of miR-4482-3p enhanced the migration and proliferation ability of HaCaT cells as well as the expression of vascular endothelial growth factor B (VEGFB). RL-QN15 also promoted the migration and proliferation ability of HaCaT cells, and VEGFB expression was mediated via inhibition of miR-4482-3p expression by the p38 mitogen-activated protein kinase (p38MAPK) and smad3 signaling pathways. Conclusions: RL-QN15 is an effective molecule for the treatment of DFUs, with the underlying mechanism related to the inhibition of miR-4482-3p expression via the p38MAPK and smad3 signaling pathways, ultimately promoting re-epithelialization, angiogenesis and wound healing. This study provides a theoretical basis for the clinical application of RL-QN15 as a molecular probe in promoting DFU wound healing.
RESUMO
BACKGROUND: Vasoregulatory autoantibodies including autoantibodies targeting G-protein-coupled receptors might play a functional role in vascular diseases. We investigated the impact of vasoregulatory autoantibodies on clinical outcome after ischemic stroke. METHODS AND RESULTS: Data were used from the PROSCIS-B (Prospective Cohort With Incident Stroke-Berlin). Autoantibody-targeting receptors such as angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor, complement factor-3 and -5 receptors, vascular endothelial growth factor receptor-1 and -2, vascular endothelial growth factor A and factor B were measured. We explored associations of high antibody levels with (1) poor functional outcome defined as modified Rankin Scale >2 or Barthel Index <60 at 1 year after stroke, (2) Barthel Index scores over time using general estimating equations, and (3) secondary vascular events (recurrent stroke, myocardial infarction) or death up to 3 years using Cox proportional hazard models. We included 491 patients with ischemic stroke with data on autoantibody levels and outcome. In models adjusted for demographics and vascular risk factors, high autoantibody concentrations (quartile 4) targeting complement factor C3a receptor, vascular endothelial growth factor receptor-2, and vascular endothelial growth factor B were associated with poor functional outcome at 1 year: (odds ratio, 2.0 [95% CI, 1.1-3.6]; odds ratio, 1.8 [95% CI, 1.1-3.2]; and odds ratio, 2.1 [95% CI, 1.2-3.6], respectively) and with lower Barthel Index scores over 3 years (complement factor C3a receptor: adjusted ß=-3.3 [95% CI, -5.7 to -0.5]; VEGF-B: adjusted ß=-2.4 [95% CI, -4.8 to -0.06]). Patients with high autoantibody levels were not at higher risk for secondary vascular events or death. CONCLUSIONS: High levels of autoantibodies against vascular endothelial growth factor receptor-2, vascular endothelial growth factor B, and complement factor C3a receptor measured are associated with poor functional outcome after stroke but not with recurrent vascular events or death. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01363856.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fator A de Crescimento do Endotélio Vascular , Fator B de Crescimento do Endotélio Vascular , AVC Isquêmico/complicações , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Estudos Prospectivos , Autoanticorpos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/complicaçõesRESUMO
In recent years, studies have demonstrated that vascular endothelial growth factor B (VEGFB) can affect the metabolism of fatty acids and glucose, and it is expected to become a target for the diagnosis and treatment of metabolic diseases such as obesity and diabetes. At present, the specific mechanism that VEGFB regulates lipid and glucose metabolism balance is not completely understood. The present study used systemic VEGFB geneknockout mice to investigate the effects of downregulation of the VEGFB gene on lipid metabolism and insulin secretion, and to explore the mechanism of the VEGFB pathway involved in the regulation of glucose and lipid metabolism. The morphological changes in the liver and pancreas of mice after VEGFB gene deletion were observed under a light microscope and a scanning electron microscope, and the effects of VEGFB gene deletion on lipid metabolism and blood glucose balance were detected by a serological technique. The detection indexes included total cholesterol (TC), triglyceride (TG), lowdensity lipoprotein cholesterol (LDLC) and highdensity lipoprotein cholesterol. Simultaneously, fasting blood glucose, glycosylated hemoglobin A1c (HbA1c), fasting insulin and glucagon were measured. Insulin sensitivity was assessed by using the insulin tolerance tests and glucose tolerance tests, and function of ßcell islets was evaluated by using the insulin resistance index (HOMAIR) and pancreatic ßcell secretion index (HOMAß). Τhe protein expression changes of vascular endothelial growth factor receptor 1 (VEGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2) in mouse islets were detected by western blotting and reverse transcriptionquantitative polymerase chain reaction (RTqPCR) after the VEGFB gene was knocked down to analyze the mechanism of VEGFB that may be involved in glucose and lipid metabolism. It was observed that after VEGFB was knocked down, mouse hepatocytes exhibited steatosis and increased secretory vesicles in islet cells. The lipid metabolism indexes such as TG, TC and LDL increased significantly; however, the levels of FBS, postprandial blood glucose and HbA1c decreased, whereas the glucose tolerance increased. Serum insulin secretion increased and HOMAIR decreased since VEGFB was knocked down. Western blotting and RTqPCR results revealed that the expression levels of VEGFR1 and neuropilin1 decreased after the VEGFB gene was knocked down, while the expression levels of VEGFA and VEGFR2 increased. The absence of VEGFB may be involved in the regulation of glucose and lipid metabolism in mice by activating the VEGFA/VEGFR2 signaling pathway. VEGFB is expected to become a new target for the treatment of metabolic diseases such as obesity and diabetes. At present, the mechanism of VEGFB involved in regulating lipid metabolism and glucose metabolism is not completely clear. It was identified that downregulating VEGFB improved lipid metabolism and insulin resistance. The role of VEGFB/VEGFR1 pathway and other family members in regulating glucose and lipid metabolism was detected, which provided a theoretical and experimental basis for VEGFB to affect the regulation of glucose and lipid metabolism balance.
Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Fator B de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Glicemia , Colesterol , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Camundongos , Obesidade/metabolismo , Triglicerídeos , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Aims/Introduction: Renal function impairment related to type 2 diabetes (T2DM) presents serious threat to public health. Previous studies suggest that vascular endothelial growth factor-B (VEGF-B) might contribute to renal injury. Therefore, this study investigated the association of serum VEGF-B level with the risk of renal function impairment in T2DM patients. Materials and Methods: Serum VEGF-B levels were measured in 213 patients with type 2 diabetes and 31 healthy participants. Participants with type 2 diabetes were further divided into a group of 112 participants with eGFR<90 mL/min/1.73m2 and 101 participants with eGFR≥ 90 mL/min/1.73m2. Clinical data were collected, and a binary logistic regression model was employed to test the association between potential predictors and eGFR. Results: Serum VEGF-B levels evaluated in type 2 diabetes patients compared with healthy controls. In patients with type 2 diabetes, serum VEGF-B level was positively correlated with triglyceride, serum creatinine and cystatin C while negatively correlated with HDL-C and eGFR. Binary logistic regression showed that serum VEGF-B level was an independent risk factor of eGFR<90 mL/min/1.73m2. Conclusions: Serum VEGF-B level is associated with renal function impairment in patients with type 2 diabetes and may be a potential drug target for diabetic kidney disease.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Insuficiência Renal , Fator B de Crescimento do Endotélio Vascular , Nefropatias Diabéticas/etiologia , Taxa de Filtração Glomerular , Humanos , Rim/fisiologia , Fator B de Crescimento do Endotélio Vascular/sangueRESUMO
Background: Osteogenesis and angiogenesis are important for bone fracture healing. Irisin is a muscle-derived monokine that is associated with bone formation. Methods: To demonstrate the effect of irisin on bone fracture healing, closed mid-diaphyseal femur fractures were produced in 8-week-old C57BL/6 mice. Irisin was administrated intraperitoneally every other day after surgery, fracture healing was assessed by using X-rays. Bone morphometry of the fracture callus were assessed by using micro-computed tomography. Femurs of mice from each group were assessed by the three-point bending testing. Effect of irisin on osteogenic differentiation in mesenchymal stem cells in vitro was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), alkaline phosphatase staining and alizarin red staining. Angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by qRT-PCR, migration tests, and tube formation assays. Results: Increased callus formation, mineralization and tougher fracture healing were observed in the irisin-treated group than in the control group, indicating the better fracture callus healing due to Irisin treatment. The vessel surface and vessel volume fraction of the callus also increased in the irisin-treated group. The expression of BMP2, CD31, and VEGF in callus were enhanced in the irisin-treated group. In mouse bone mesenchymal stem cells, irisin promoted ALP expression and mineralization, and increased the expression of osteogenic genes, including OSX, Runx2, OPG, ALP, OCN and BMP2. Irisin also promoted HUVEC migration and tube formation. Expression of angiogenic genes, including ANGPT1, ANGPT2, VEGFb, CD31, FGF2, and PDGFRB in HUVECs were increased by irisin. Conclusion: All the results indicate irisin can promote fracture healing through osteogenesis and angiogenesis. These findings help in the understanding of muscle-bone interactions during fracture healing. The Translational Potential of this Article: Irisin was one of the most important monokine secreted by skeletal muscle. Studies have found that irisin have anabolic effect one bone remodeling through affecting osteocyte and osteoblast. Based on our study, irisin could promote bone fracture healing by increasing bone mass and vascularization, which provide a potential usage of irisin to promote fracture healing and improve clinical outcomes.
RESUMO
Cancer is the second leading cause of mortality accounting for one in every six deaths globally. Plant secondary metabolites, among them polyphenols, represent an effective and much safer alternative approach to the currently available medications. In this work, utilizing LC-MS/MS, we characterized the constituents of S. yapa leaves extract and evaluated its antioxidant and anticancer properties. In total, 34 secondary metabolites, mainly flavonoids (Tricin, luteolin, and apigenin and their glucosides as well as sulfated derivatives) were identified. The extract manifested substantial antioxidant activity in DPPH assay, and high total phenolic content determined by Folin Ciocalteu method. The extract was safe up to 4800â¯mg/kg b.wt. when administered orally in mice and neither affected the hematological parameters nor the liver enzyme levels at the studied dose (LD50, 480â¯mg, kg b.wt.). In the treated animals, the extract surpassed the reference drug (5-flouro uracil) and significantly reduced the tumor volume and weight by 71.50 and 85.46%, respectively, increased the median survival time to 53.2â¯days and the lifespan by 116%. The extract improved all the hematological parameters, where it increased the hemoglobin (Hb) concentration, red blood cell (RBC) count, packed cell volume (PVC) and platelets by 58.21, 8.98, 9.89 and 120%, respectively, compared to the untreated EAC bearing animals. Additionally, the extract significantly declined the elevated levels of ALT and AST enzymes by 29.18% and 59.88%, respectively. In molecular docking, the annotated flavonoids displayed appreciable binding affinities to the active sites of VEGFR1 and VEGFR2. In conclusion, Saba yapa is a promising plant that can be introduced to further advanced clinical studies for the development of novel anticancer drugs with lower side effects.
RESUMO
BACKGROUND: Type 2 diabetes (T2D) is characterized by insufficient insulin secretion caused by defective pancreatic ß-cell function or insulin resistance, resulting in an increase in blood glucose. However, the mechanism involved in this lack of insulin secretion is unclear. The level of vascular endothelial growth factor B (VEGF-B) is significantly increased in T2D patients. The inactivation of VEGF-B could restore insulin sensitivity in db/db mice by reducing fatty acid accumulation. It is speculated that VEGF-B is related to pancreatic ß-cell dysfunction and is an important factor affecting ß-cell secretion of insulin. As an in vitro model of normal pancreatic ß-cells, the MIN6 cell line can be used to analyze the mechanism of insulin secretion and related biological effects. AIM: To study the role of VEGF-B in the insulin secretion signaling pathway in MIN6 cells and explore the effect of VEGF-B on blood glucose regulation. METHODS: The MIN6 mouse pancreatic islet ß-cell line was used as the model system. By administering exogenous VEGF-B protein or knocking down VEGF-B expression in MIN6 cells, we examined the effects of VEGF-B on insulin secretion, Ca2+ and cyclic adenosine monophosphate (cAMP) levels, and the insulin secretion signaling pathway. RESULTS: Exogenous VEGF-B inhibited the secretion of insulin and simultaneously reduced the levels of Ca2+ and cAMP in MIN6 cells. Exogenous VEGF-B also reduced the expression of phospholipase C gamma 1 (PLCγ1), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), and other proteins in the insulin secretion pathway. Upon knockdown of VEGF-B, MIN6 cells exhibited increased insulin secretion and Ca2+ and cAMP levels and upregulated expression of PLCγ1, PI3K, AKT, and other proteins. CONCLUSION: VEGF-B can regulate insulin secretion by modulating the levels of Ca2+ and cAMP. VEGF-B involvement in insulin secretion is related to the expression of PLCγ1, PI3K, AKT, and other signaling proteins. These results provide theoretical support and an experimental basis for the study of VEGF-B in the pathogenesis of T2D.
RESUMO
Diabetic nephropathy (DN) is considered the primary causes of end-stage renal disease (ESRD) and is related to abnormal glycolipid metabolism, hemodynamic abnormalities, oxidative stress and chronic inflammation. Antagonism of vascular endothelial growth factor B (VEGF-B) could efficiently ameliorate DN by reducing renal lipotoxicity. However, this pharmacological strategy is far from satisfactory, as it ignores numerous pathogenic factors, including anomalous reactive oxygen species (ROS) generation and inflammatory responses. We found that the upregulation of VEGF-B and downregulation of interleukin-22 (IL-22) among DN patients were significantly associated with the progression of DN. Thus, we hypothesized that a combination of a VEGF-B antibody and IL-22 could protect against DN not only by regulating glycolipid metabolism but also by reducing the accumulation of inflammation and ROS. To meet these challenges, a novel anti-VEGFB/IL22 fusion protein was developed, and its therapeutic effects on DN were further studied. We found that the anti-VEGFB/IL22 fusion protein reduced renal lipid accumulation by inhibiting the expression of fatty acid transport proteins and ameliorated inflammatory responses via the inhibition of renal oxidative stress and mitochondrial dysfunction. Moreover, the fusion protein could also improve diabetic kidney disease by increasing insulin sensitivity. Collectively, our findings indicate that the bifunctional VEGF-B antibody and IL-22 fusion protein could improve the progression of DN, which highlighted a novel therapeutic approach to DN.
RESUMO
Vascular endothelial growth factor B (VEGF-B) is a critical metabolic regulator in insulin resistance, and lipid distribution. We intended to ascertain the relationship between circulating VEGF-B and non-alcoholic fatty liver disease (NAFLD) in the general public. We recruited a total of 194 general participants for a routine physical health examination; of these, 84 participants were identified with NAFLD and 110 without NAFLD based on ultrasonographic findings. Homeostasis model assessment of insulin resistance (HOMA-IR), body mass index (BMI), HbA1c, liver function, kidney function, plasma VEGF-B levels and indexes of metabolic syndrome (blood pressure, fasting plasma glucose, fasting lipids) were evaluated. Plasma VEGF-B values were significantly higher in individuals with NAFLD compared to those without NAFLD (P = 0.022), and analysis of covariance confirmed this result. VEGF-B showed a positive correlation with γ-glutamyl transpeptidase (γ-GT) and HOMA-IR in univariate analysis (q = 0.242; P = 0.001; q =0.174; P = 0.019, respectively). Multiple linear regression analysis showed that γ-GT and ALT were independently correlated with VEGF-B even after adjusted for gender and age (q = 0.286; P = 0.01; q =0.237; P = 0.033, respectively). Moreover, plasma VEGF-B showed a powerful correlation with blood pressure and renal dysfunction. Plasma VEGF-B might be a new clinical variable related to NAFLD and could be a proper biomarker for the early detection of hypertension and renal dysfunction. However, further studies with large cohorts' size are warranted to validate our findings.