Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848951

RESUMO

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Assuntos
Apoptose , Fator Neurotrófico Ciliar , Homocisteína , Células Endoteliais da Veia Umbilical Humana , Inflamação , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Janus Quinase 2/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Homocisteína/farmacologia , Homocisteína/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/genética , Apoptose/efeitos dos fármacos , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos
2.
Angiogenesis ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060773

RESUMO

As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.

3.
Nutr Metab Cardiovasc Dis ; 34(6): 1528-1537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508990

RESUMO

BACKGROUND AND AIMS: Hyperuricemia frequently accompanies dyslipidemia, yet the precise mechanism remains elusive. Leveraging cellular metabolomics analyses, this research probes the potential mechanisms wherein hyperuricemia provokes endothelial cell abnormalities, inducing disordered bile metabolism and resultant lipid anomalies. METHODS AND RESULTS: We aimed to identify the differential metabolite associated with lipid metabolism through adopting metabolomics approach, and thereafter adequately validating its protective function on HUVECs by using diverse assays to measure cellular viability, reactive oxygen species, migration potential, apoptosis and gene and protein levels of inflammatory factors. Taurochenodeoxycholic acid (TCDCA) (the differential metabolite of HUVECs) and the TCDCA-involved primary bile acid synthesis pathway were found to be negatively correlated with high UA levels based on the results of metabolomics analysis. It was noted that compared to the outcomes observed in UA-treated HUVECs, TCDCA could protect against UA-induced cellular damage and oxidative stress, increase proliferation as well as migration, and decreases apoptosis. In addition, it was observed that TCDCA might protect HUVECs by inhibiting UA-induced p38 mitogen-activated protein kinase/nuclear factor kappa-B p65 (p38MAPK/NF-κB p65) pathway gene and protein levels, as well as the levels of downstream inflammatory factors. CONCLUSION: The pathogenesis of hyperuricemia accompanying dyslipidemia may involve high uric acid levels eliciting inflammatory reactions and cellular damage in human umbilical vein endothelial cells (HUVECs), mediated through the p38MAPK/NF-κB signaling pathway, subsequently impinging on cellular bile acid synthesis and reducing bile acid production.


Assuntos
Apoptose , Movimento Celular , Dislipidemias , Células Endoteliais da Veia Umbilical Humana , Hiperuricemia , Metabolômica , Estresse Oxidativo , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hiperuricemia/sangue , Hiperuricemia/metabolismo , Dislipidemias/sangue , Apoptose/efeitos dos fármacos , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ácido Úrico/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator de Transcrição RelA/metabolismo , Mediadores da Inflamação/metabolismo , Ácidos e Sais Biliares/metabolismo , Proliferação de Células/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos
4.
Mol Cell Biochem ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392343

RESUMO

Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.

5.
BMC Pulm Med ; 23(1): 183, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231402

RESUMO

BACKGROUND: To investigate the changes and clinical significance of vascular endothelial injury markers in type 2 diabetes mellitus (T2DM) complicated with pulmonary embolism (PE). METHODS: This prospective study enrolled patients with T2DM hospitalized in one hospital from January 2021 to June 2022. Soluble thrombomodulin (sTM) (ELISA), von Willebrand factor (vWF) (ELISA), and circulating endothelial cells (CECs) (flow cytometry) were measured. PE was diagnosed by computed tomography pulmonary angiography (CTPA). RESULTS: Thirty participants were enrolled in each group. The plasma levels of sTM (151.22 ± 120.57 vs. 532.93 ± 243.82 vs. 1016.51 ± 218.00 pg/mL, P < 0.001) and vWF (9.63 ± 2.73 vs. 11.50 ± 2.17 vs. 18.02 ± 3.40 ng/mL, P < 0.001) and the percentage of CECs (0.17 ± 0.46 vs. 0.30 ± 0.08 vs. 0.56 ± 0.18%, P < 0.001) gradually increased from the control group to the T2DM group to the T2DM + PE group. sTM (OR = 1.002, 95%CI: 1.002-1.025, P = 0.022) and vWF (OR = 1.168, 95%CI: 1.168-2.916, P = 0.009) were associated with T2DM + PE. sTM > 676.68 pg/mL for the diagnosis of T2DM + PE achieved an AUC of 0.973, while vWF > 13.75 ng/mL achieved an AUC of 0.954. The combination of sTM and vWF above their cutoff points achieved an AUC of 0.993, with 100% sensitivity and 96.7% specificity. CONCLUSIONS: Patients with T2DM show endothelial injury and dysfunction, which were worse in patients with T2DM and PE. High sTM and vWF levels have certain clinical predictive values for screening T2DM accompanied by PE.


Assuntos
Diabetes Mellitus Tipo 2 , Embolia Pulmonar , Humanos , Células Endoteliais , Diabetes Mellitus Tipo 2/complicações , Fator de von Willebrand/análise , Estudos Prospectivos , Endotélio Vascular/química , Biomarcadores
6.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3022-3031, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381960

RESUMO

This study aims to investigate the effect and mechanism of arctigenin(ARC) in the treatment of vascular endothelial injury in rats with pregnancy-induced hypertension(PIH). Fifty SD rats pregnant for 12 days were randomly assigned into a control group, a model group, an ARC group, a rapamycin(RAP, autophagy inducer) group, and an ARC+3-methyladenine(3-MA, autophagy inhibitor) group, with 10 rats in each group. The rats in the other groups except the control group were intraperitoneally injected with nitrosyl-L-arginine methyl ester(50 mg·kg~(-1)·d~(-1)) to establish the PIH model on the 13th day of pregnancy. On the 15th day of pregnancy, the rats in ARC, RAP, and ARC+3-MA groups were intraperitoneally injected with ARC(50 mg·kg~(-1)·d~(-1)), RAP(1 mg·kg~(-1)·d~(-1)), and 3-MA(15 mg·kg~(-1)·d~(-1))+ARC(50 mg·kg~(-1)·d~(-1)), respectively. The pregnant rats in the control group and the model group were intraperitoneally injected with the same amount of normal saline. The blood pressure and 24 h urine protein(24 h-UP) of pregnant rats in each group were measured before and after intervention. Cesarean section was performed to terminate pregnancy on day 21, and the body weight and body length of fetal rats were compared among groups. Hematoxylin-eosin(HE) staining was employed to observe the pathological changes of placenta. The expression of endothelin-1(ET-1) and endothelial nitric oxide synthase(eNOS) in placenta was detected by immunohistochemistry. The serum levels of ET-1 and nitric oxide(NO) were determined with corresponding kits. The expression of microtubule-associated protein 1 light chain 3(LC3), Beclin-1, NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein with CARD domain(ASC), caspase-1, interleukin(IL)-1ß, and IL-18 was determined by immunofluorescence and Western blot. The level of reactive oxygen species(ROS) in placenta was measured by fluorescence staining. The results showed that on day 12 of pregnancy, the blood pressure and 24 h-UP had no significant differences among groups. On days 15, 19, and 21, the blood pressure and 24 h-UP in the model group were higher than those in the control group(P<0.05). On days 19 and 21, the blood pressure and 24 h-UP in ARC group and RAP group were lower than those in the model group(P<0.05), and they were higher in the ARC+3-MA group than in the ARC group(P<0.05). On day 21, the model group had lower body weight and body length of fetal rats(P<0.05), higher serum level of ET-1, and lower serum level of NO(P<0.05) than the control group. Moreover, the placental tissue showed typical pathological damage, down-regulated expression of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and eNOS(P<0.05), up-regulated expression of ET-1, NLRP3, ASC, caspase-1, IL-1ß, and IL-18(P<0.05), and elevated ROS level. Compared with the model group, ARC and RAP groups showed increased body weight and body length of fetal rats(P<0.05), lowered serum level of ET-1, elevated serum level of NO(P<0.05), reduced pathological damage of placental tissue, up-regulated expression of LC3-Ⅱ/LC3-Ⅰ, Beclin-1, and eNOS(P<0.05), down-regulated expression of ET-1, NLRP3, ASC, caspase-1, IL-1ß, and IL-18(P<0.05), and lowered ROS level. Compared with ARC group, 3-MA reversed the effects of ARC on the above indicators. In conclusion, ARC can inhibit the activation of NLRP3 inflammasome and mitigate vascular endothelial damage in PIH rats by inducing autophagy of vascular endothelial cells.


Assuntos
Hipertensão Induzida pela Gravidez , Feminino , Gravidez , Animais , Ratos , Humanos , Ratos Sprague-Dawley , Hipertensão Induzida pela Gravidez/tratamento farmacológico , Células Endoteliais , Inflamassomos , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína Beclina-1 , Cesárea , Espécies Reativas de Oxigênio , Placenta , Caspase 1 , Autofagia
7.
Physiol Genomics ; 54(12): 471-485, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250558

RESUMO

Oxidized low-density lipoprotein (ox-LDL) stimulation impairs the oxidation-reduction equilibrium in vascular endothelial cells (VECs) and contributes to atherosclerosis (AS). This study probed the mechanisms of extracellular vesicle (EV)-mediated transfer of lncRNA CLDN10 antisense RNA 1 (CLDN10-AS1) in ox-LDL-induced VEC injury. Initially, VEC injury models were established by treating human umbilical vein endothelial cells (HUVECs) with ox-LDL. EVs were isolated from HUVECs (HUVECs-EVs) and identified. CLDN10-AS1, microRNA (miR)-186, and Yin Yang 1 (YY1) expressions in ox-LDL-treated HUVECs and EVs derived from these cells (ox-EVs) were measured. HUVECs were incubated with EVs, after which the cell viability, apoptosis, and concentrations of proinflammatory cytokines and oxidative stress markers were measured. We discovered that CLDN10-AS1 and YY1 were upregulated in ox-LDL-treated HUVECs, whereas miR-186 was downregulated. ox-EVs treatment elevated CLDN10-AS1 expression in HUVECs and ox-EVs overexpressing CLDN10-AS1 promoted VEC injury. Besides, CLDN10-AS1 is competitively bound to miR-186 and promoted YY1 expression. Rescue experiments revealed that miR-186 overexpression or YY1 suppression partially reversed the roles of ox-EVs overexpressing CLDN10-AS1 in ox-LDL-induced VEC injury. Lastly, clinical serum samples were collected for verification. Overall, CLDN10-AS1 carried by HUVECs-EVs into HUVECs competitively bound to miR-186 to elevate YY1 expression, thereby aggravating ox-LDL-induced VEC injury.


Assuntos
Vesículas Extracelulares , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Vesículas Extracelulares/metabolismo , Apoptose
8.
Small ; 18(30): e2201933, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789094

RESUMO

Selective induction of tumor thrombus infarction is a promising antitumor strategy. Non-persistent embolism due to non-compacted thrombus and activated fibrinolytic system within the tumor large blood vessels and tumor margin recurrence are the main therapeutic bottlenecks. Herein, an erythrocyte membrane-coated invisible acoustic-sensitive nanoparticle (TXA+DOX/PFH/RBCM@cRGD) is described, which can induce tumor thrombus infarction by precisely damaging tumor vascular endothelium. It is revealed that TXA+DOX/PFH/RBCM@cRGD can effectively accumulate on the endothelial surface of tumor vessels with the help of the red blood cell membrane (RBCM) stealth coating and RGD cyclic peptide (cRGD), which can be delivered in a targeted manner as nanoparticle missiles. As a kind of phase-change material, perfluorohexane (PFH) nanodroplets possess excellent acoustic responsiveness. Acoustic-sensitive missiles can undergo an acoustic phase transition and intense cavitation with response to low-intensity focused ultrasound (LIFU), damaging the tumor vascular endothelium, rapidly initiating the coagulation cascade, and forming thromboembolism in the tumor vessels. The drugs loaded in the inner water phase are released explosively. Tranexamic acid (TXA) inhibits the fibrinolytic system, and doxorubicin (DOX) eliminates the margin survival. In summary, a stealthy and acoustically responsive multifunctional nanoparticle delivery platform is successfully developed for inducing thrombus infarction by precisely damaging tumor vascular endothelium.


Assuntos
Nanopartículas , Neoplasias , Acústica , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Endotélio Vascular , Membrana Eritrocítica , Humanos , Infarto/tratamento farmacológico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico
9.
J Nanobiotechnology ; 20(1): 149, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305662

RESUMO

Copper oxide nanoparticles (CuONPs) are widely used metal oxide NPs owing to their excellent physical-chemical properties. Circulation translocation of CuONPs after inhalation leads to vascular endothelial injury. Mitochondria, an important regulatory hub for maintaining cell functions, are signaling organelles in responses to NPs-induced injury. However, how mitochondrial dynamics (fission and fusion) and mitophagy (an autophagy process to degrade damaged mitochondria) are elaborately orchestrated to maintain mitochondrial homeostasis in CuONPs-induced vascular endothelial injury is still unclear. In this study, we demonstrated that CuONPs exposure disturbed mitochondrial dynamics through oxidative stress-dependent manner in vascular endothelial cells, as evidenced by the increase of mitochondrial fission and the accumulation of fragmented mitochondria. Inhibition of mitochondrial fission with Mdivi-1 aggravated CuONPs-induced mtROS production and cell death. Furthermore, we found that mitochondrial fission led to the activation of PINK1-mediated mitophagy, and pharmacological inhibition with wortmannin, chloroquine or genetical inhibition with siRNA-mediated knockdown of PINK1 profoundly repressed mitophagy, suggesting that the protective role of mitochondrial fission and PINK1-mediated mitophagy in CuONPs-induced toxicity. Intriguingly, we identified that TAX1BP1 was the primary receptor to link the ubiquitinated mitochondria with autophagosomes, since TAX1BP1 knockdown elevated mtROS production, decreased mitochondrial clearance and aggravated CuONPs-induced cells death. More importantly, we verified that urolithin A, a mitophagy activator, promoted mtROS clearance and the removal of damaged mitochondria induced by CuONPs exposure both in vitro and in vivo. Overall, our findings indicated that modulating mitophagy may be a therapeutic strategy for pathological vascular endothelial injury caused by NPs exposure.


Assuntos
Mitofagia , Nanopartículas , Cobre/farmacologia , Células Endoteliais/metabolismo , Óxidos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
10.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36613786

RESUMO

Vascular endothelial injury is important in anthracycline-induced cardiotoxicity. Anthracyclines seriously damage the mitochondrial function and mitochondrial homeostasis. In this study, we investigated the damage of epirubicin to vascular endothelial cells and the protective role of metformin from the perspective of mitochondrial homeostasis. We found that epirubicin treatment resulted in DNA double-strand breaks (DSB), elevated reactive oxygen species (ROS) production, and excessive Angiotensin II release in HUVEC cells. Pretreatment with metformin significantly mitigated the injuries caused by epirubicin. In addition, inhibited expression of Mitochondrial transcription factor A (TFAM) and increased mitochondria fragmentation were observed in epirubicin-treated cells, which were partially resumed by metformin pretreatment. In epirubicin-treated cells, knockdown of TFAM counteracted the attenuated DSB formation due to metformin pretreatment, and inhibition of mitochondrial fragmentation with Mdivi-1 decreased DSB formation but increased TFAM expression. Furthermore, epirubicin treatment promoted mitochondrial fragmentation by stimulating the expression of Dynamin-1-like protein (DRP1) and inhibiting the expression of Optic atrophy-1(OPA1) and Mitofusin 1(MFN1), which could be partially prevented by metformin. Finally, we found metformin could increase TFAM expression and decrease DRP1 expression in epirubicin-treated HUVEC cells by upregulating the expression of calcineurin/Transcription factor EB (TFEB). Taken together, this study provided evidence that metformin treatment was an effective way to mitigate epirubicin-induced endothelial impairment by maintaining mitochondrial homeostasis.


Assuntos
Metformina , Humanos , Epirubicina/efeitos adversos , Metformina/farmacologia , Metformina/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Homeostase , Dinâmica Mitocondrial , Dinaminas/genética , Dinaminas/metabolismo
11.
J Intensive Care Med ; 35(11): 1290-1296, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31284807

RESUMO

BACKGROUND: Midkine has been reported to play a crucial role in inflammatory, hypoxia, and tissue injury processes. We aimed to investigate plasma midkine in septic patients and its association with 28-day mortality and organ function. METHODS: Septic patients admitted to the Department of Critical Care Medicine, Zhongda Hospital, a tertiary hospital, from November 2017 to March 2018 were enrolled in the study. The baseline characteristics of the septic patients were recorded at admission. A peripheral blood sample was obtained at admission, and plasma midkine levels were evaluated with an immunoassay. All patients were followed up with for 28 days, with all-cause mortality being recorded. RESULTS: A total of 26 septic patients were enrolled, which included 18 survivors and 8 nonsurvivors at day 28. Plasma midkine levels were significantly elevated in the nonsurvivor group compared with the survivors (ng/L, 763.6 [404.7-1305], 268.5 [147.8-511.4]; P = .0387]. Plasma midkine levels were elevated in septic patients with moderate/severe acute respiratory distress syndrome (ARDS) compared with patients with non/mild ARDS (ng/L, 522.3 [336.6-960.1] vs 243.8 [110.3-478.9]; P = .0135) and in those with acute kidney injury compared with those without (ng/L, 489.8 [259.2-1058] vs 427.9 [129.6-510.3]; P = .0973). Changes in plasma midkine levels were also associated with extravascular lung water index (P = .063) and pulmonary vascular permeability index (P = .049). CONCLUSIONS: Plasma midkine was associated with 28-day mortality, as well as pulmonary and kidney injury, in septic patients.


Assuntos
Injúria Renal Aguda , Síndrome do Desconforto Respiratório , Sepse , Humanos , Midkina , Plasma , Prognóstico
12.
Ecotoxicol Environ Saf ; 198: 110652, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32380305

RESUMO

At present, PM2.5 exposure has been considered as a major risk factor for cardiovascular disease. Most studies have focused on the toxic mechanism of PM2.5 in direct contact with cells or biomolecules, only few studies have reported the toxic mechanism of PM2.5 mediated by intercellular communication. Extracellular vesicles are the main carriers of intercellular communication and signal transduction in vivo, and play a vital role in the occurrence and development of cardiovascular disease. Therefore, the present research aimed to determine whether platelets-derived extracellular vesicles (P-EVs) secreted from PM2.5-exposed platelets are transferred into the human umbilical vein endothelial cells (HUVECs) and mediated the PM2.5-induced vascular endothelial injury by affecting normal cellular function. The result showed that P-EVs secreted from PM2.5-exposed platelets significantly reduced the proliferation promoting effect of normal P-EVs on vascular endothelium by decreasing the effective factors promoting vascular endothelial growth. Meanwhile, the levels of intercellular adhesion molecules, proinflammatory factors (ICAM-1, IL-6, and TNF-α) and the ROS level of HUVECs were markedly elevated. In addition, the apoptotic rate was increased via up-regulating the protein level of cytochrome-C(Cyt C), Bax, cleaved caspase-3 and down-regulating Bcl-2 in HUVECs, indicating that mitochondrial apoptotic pathway was activated by P-EVs secreted from PM2.5-exposed platelets. Further, the expression level of P-EVs targeted miRNAs in HUVECs was altered, indicating that miRNAs released from P-EVs were transferred to HUVECs and regulated the cellular function, while PM2.5 could inhibit this regulatory effect. In summary, these results demonstrate that the P-EVs secreted from PM2.5-exposed platelets can enter the HUVECs, which mediate the PM2.5-induced vascular endothelial injury. These findings provide a new perspective and theoretical basis for further exploring the mechanism of cardiovascular damage caused by PM2.5 exposure.


Assuntos
Plaquetas/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Material Particulado/toxicidade , Plaquetas/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Transdução de Sinais , Regulação para Cima
13.
J Cell Mol Med ; 23(4): 2731-2743, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30770623

RESUMO

Lipid metabolism disorders lead to vascular endothelial injury. Matrine is an alkaloid that has been used to improve obesity and diabetes and for the treatment of hepatitis B. However, its effect on lipid metabolism disorders and vascular injury is unclear. Here, we investigated the effect of matrine on high-fat diet fed mice and oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs). Computational virtual docking analyses, phosphoinositide 3-kinase (PI3K) and protein kinase C-α (PKCα) inhibitors were used to localize matrine in vascular injuries. The results showed that matrine-treated mice were more resistant to abnormal lipid metabolism and inflammation than vehicle-treated mice and exhibited significantly alleviated ox-LDL-stimulated dysfunction of HUVECs, restored diminished nitric oxide release, decreased reactive oxygen species generation and increased expression phosphorylation of AKT-Ser473 and endothelial nitric oxide synthase (eNOS)-Ser1177. Matrine not only up-regulates eNOS-Ser1177 but also down-regulates eNOS-Thr495, a PKCα-controlled negative regulator of eNOS. Using computational virtual docking analyses and biochemical assays, matrine was also shown to influence eNOS/NO via PKCα inhibition. Moreover, the protective effects of matrine were significantly abolished by the simultaneous application of PKCα and the PI3K inhibitor. Matrine may thus be potentially employed as a novel therapeutic strategy against high-fat diet-induced vascular injury.


Assuntos
Alcaloides/farmacologia , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas LDL/toxicidade , Quinolizinas/farmacologia , Lesões do Sistema Vascular/prevenção & controle , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Lesões do Sistema Vascular/etiologia , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Matrinas
14.
Crit Care ; 21(1): 261, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058634

RESUMO

BACKGROUND: Sugar-protein glycocalyx coats healthy endothelium, but its ultrastructure is not well described. Our aim was to determine the three-dimensional ultrastructure of capillary endothelial glycocalyx in the heart, kidney, and liver, where capillaries are, respectively, continuous, fenestrated, and sinusoidal. METHODS: Tissue samples were processed with lanthanum-containing alkaline fixative, which preserves the structure of glycocalyx. RESULTS: Scanning and transmission electron microscopy revealed that the endothelial glycocalyx layer in continuous and fenestrated capillaries was substantially thicker than in sinusoids. In the heart, the endothelial glycocalyx presented as moss- or broccoli-like and covered the entire luminal endothelial cell surface. In the kidney, the glycocalyx appeared to nearly occlude the endothelial pores of the fenestrated capillaries and was also present on the surface of the renal podocytes. In sinusoids of the liver, glycocalyx covered not only the luminal side but also the opposite side, facing the space of Disse. In a mouse lipopolysaccharide-induced experimental endotoxemia model, the capillary endothelial glycocalyx was severely disrupted; that is, it appeared to be peeling off the cells and clumping. Serum concentrations of syndecan-1, a marker of glycocalyx damage, were significantly increased 24 h after administration of lipopolysaccharide. CONCLUSIONS: In the present study, we visualized the three-dimensional ultrastructure of endothelial glycocalyx in healthy continuous, fenestrated, and sinusoidal capillaries, and we also showed their disruption under experimental endotoxemic conditions. The latter may provide a morphological basis for the microvascular endothelial dysfunction associated with septic injury to organs.


Assuntos
Endotélio Vascular/anatomia & histologia , Glicocálix/patologia , Animais , Endotélio Vascular/microbiologia , Glicocálix/metabolismo , Glicocálix/fisiologia , Coração/anatomia & histologia , Estimativa de Kaplan-Meier , Rim/anatomia & histologia , Rim/irrigação sanguínea , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/metabolismo , Fígado/anatomia & histologia , Fígado/irrigação sanguínea , Camundongos/anatomia & histologia , Camundongos/microbiologia , Microscopia Eletrônica/métodos , Modelos de Riscos Proporcionais
15.
IUBMB Life ; 68(1): 51-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26662566

RESUMO

We hypothesized that lack of the high-energy phosphates during liver storage may potentially cause persistent injury to the vascular endothelium. Biopsies were obtained from livers obtained from beating heart human donors, stored either in the standard storage solution, that is, University of Wisconsin solution (UWS) or Celsior, and examined for various markers related to progressive endothelial injury. The expression of P2Y1 receptor, the major signal transduction machinery for adenosine triphosphate/adenosine diphosphate, decreased in hepatic vascular endothelial cells over time. Despite unaltered endothelial nitric oxide synthase (eNOS) levels, serine1177-phosphorylated eNOS, the active form of eNOS, progressively decreased with time. The production of nitric oxide enzyme decreased with time when liver tissues were examined in vitro. This also coincided with decreased interaction of eNOS with actin nucleating proteins like myristoylated alanine-rich C kinase substrate and Rac1, which plays a role in modulating the cytoskeleton and helps position eNOS in a favorable cytosolic position for active enzymatic activity. Conversely, the interaction of eNOS with caveolin1 was significantly increased 6 H after ex vivo storage. Finally, we demonstrated by targeted contrast-enhanced ultrasound that membrane-bound vascular cell adhesion molecule-1 in the hepatic vascular endothelial cell increased after 6 H of ex vivo storage. Overall, the results of this study provide evidence of a progressive hepatic vascular endothelial injury during the ex vivo storage. This may be a causative factor for ischemic cholangiopathy and delayed graft function post liver transplantation. © 2015 IUBMB Life, 68(1):51-57, 2015.


Assuntos
Endotélio Vascular/patologia , Fígado , Preservação de Tecido , Trifosfato de Adenosina/metabolismo , Endotélio Vascular/diagnóstico por imagem , Endotélio Vascular/enzimologia , Humanos , Transplante de Fígado , Óxido Nítrico Sintase Tipo III/metabolismo , Preservação de Órgãos , Receptores Purinérgicos P2Y1/metabolismo , Ultrassonografia , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
Metabolites ; 14(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39195548

RESUMO

As an unhealthy dietary habit, a high-salt diet can affect the body's endocrine system and metabolic processes. As one of the most important metabolites, bile acids can prevent atherosclerosis and reduce the risk of developing cardiovascular diseases. Therefore, in the present study, we aimed to reveal the bile acid metabolism changes in salt-sensitive hypertension-induced vascular endothelial injury. The model was established using a high-salt diet, and the success of this procedure was confirmed by detecting the levels of the blood pressure, vascular regulatory factors, and inflammatory factors. An evaluation of the histological sections of arterial blood vessels and kidneys confirmed the pathological processes in these tissues of experimental rats. Bile acid metabolism analysis was performed to identify differential bile acids between the low-salt diet group and the high-salt diet group. The results indicated that the high-salt diet led to a significant increase in blood pressure and the levels of endothelin-1 (ET-1) and tumor necrosis factor-α (TNF-α). The high-salt diet causes disorders in bile acid metabolism. The levels of four differential bile acids (glycocholic acid, taurolithocholic acid, tauroursodeoxycholic acid, and glycolithocholic acid) significantly increased in the high-salt group. Further correlation analysis indicated that the levels of ET-1 and TNF-α were positively correlated with these differential bile acid levels. This study provides new evidence for salt-sensitive cardiovascular diseases and metabolic changes caused by a high-salt diet in rats.

17.
Front Biosci (Landmark Ed) ; 29(1): 44, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287826

RESUMO

BACKGROUND: Current studies have demonstrated that disintegrin and metalloproteinase 17 (ADAM17) plays a critical role in the pathogenesis of sepsis. MicroRNA (miR)-145 is known to control immune responses as an anti-inflammatory modulatory molecule. However, a fundamental understanding of how miR-145 regulates ADAM17 and, more broadly, sepsis-induced inflammatory response remains unknown. METHODS: We used western blotting and quantitative real-time PCR (qRT-PCR) to measure expression levels of ADAM17 and miR-145. Enzyme-linked immunosorbent assays (ELISA) were performed to measure cytokine production. To determine if ADAM17 is a target gene of miR-145, bioinformatics analyses and luciferase reporter assays were conducted. The impacts of ADAM17 and miR-145 on sepsis-induced inflammatory responses were accessed in vitro using human umbilical endothelial cells (HUVECs) treated with lipopolysaccharide (LPS). Sepsis-induced inflammatory response was measured in vivo using a polymicrobial septic mouse model induced by cecal ligation and puncture (CLP) with pre-injection of a miR-145 agomir. RESULTS: In HUVECs treated with LPS, miR-145 expression was downregulated and miR-145 negatively regulated ADAM17 expression through direct binding to the ADAM17 transcript 3'-UTR. MiR-145 overexpression markedly reduced LPS-induced inflammatory cytokine production by targeting ADAM17 in HUVECs. In comparison to CLP-induced septic mice treated with a control agomir, treatment with a miR-145 agomir significantly reduced the expression of ADAM17, numerous downstream cytokines such as IL-6, TNF-α, IL-1ß and MCP-1, and the endothelial injury factors ICAM-1, VCAM-1. The miR-145 agomir also alleviated acute lung and kidney injury and improved the survival rate of septic mice. CONCLUSIONS: This study showed that miR-145, by specifically targeting ADAM17, negatively regulates sepsis-induced inflammatory responses and vascular endothelial injury, and ultimately improved organ injury and survival during sepsis. The underlying mechanism for the regulation of ADAM17 expression by miR-145 and sepsis-induced inflammatory reactions may offer sepsis patients a novel therapeutic option.


Assuntos
Proteína ADAM17 , MicroRNAs , Sepse , Animais , Humanos , Camundongos , Proteína ADAM17/genética , Apoptose , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-39039329

RESUMO

As one of the most commonly used antidiabetic medications clinically, liraglutide is involved in the protection of vascular endothelium, and whether it can relieve high glucose-induced vascular endothelial damage was unknown. This study aims to address the response of liraglutide (LIRA) on human umbilical vein endothelial cells, as well as to elucidate its possible underlying mechanism. We established a vascular endothelial cell injury model by exposing human umbilical vein endothelial cells (HUVECs) to high glucose, and used LIRA pretreatment before HG treatment to address the endothelial protective effect of LIRA. Our results suggest that LIRA prevented HG-induced HUVEC apoptosis, oxidative stress, inflammasome activation, and pyroptosis. Furthermore, silencing of tribbles homolog 3 (TRIB3) could markedly reduce HG-induced HUVEC apoptosis, ROS level, the expressions of TXNIP, cleaved caspase3, NLRP3, and caspase1, indicating TRIB3 inhibition protected HUVECs against HG-induced vascular endothelial injury. In addition, LIRA restrained NF-κB/IκB-α signaling pathway activation in HUVECs. Thus, LIRA appears to mitigate HG-induced apoptosis, oxidative stress, inflammasome activation, and pyroptosis in HUVECs via regulating the TRIB3/NF-κB/IκB-α signaling pathway. Our study provides new insight into the mechanisms underlying the protective activity of LIRA against the vascular endothelial injury in diabetic vascular complication.

19.
Front Microbiol ; 15: 1423428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104587

RESUMO

Objective: Tangbi capsule (TBC) is a traditional Chinese medicine prescription, which has the potential to improve the vascular insufficiency of lower extremities and limb numbness in diabetes. However, the potential mechanism remains unknown. This study aims to investigate the pharmacological effects and mechanism of TBC on rats with diabetic lower extremities arterial disease (LEAD). Methods: The mechanism of TBC on diabetic LEAD was investigated through metabolomics and transcriptomics analysis, and the main components of TBC were determined by mass spectrometry. The efficacy and mechanism of TBC on diabetic LEAD rats were investigated through in vitro experiments, histopathology, blood flow monitoring, western blot, and real-time polymerase chain reaction. Results: Mass spectrometry analysis identified 31 active chemical components in TBC including (2R)-2,3-Dihydroxypropanoic acid, catechin, citric acid, miquelianin, carminic acid, salicylic acid, formononetin, etc. In vitro analysis showed that TBC could reduce endothelial cell apoptosis and promote angiogenesis. Histopathological analysis showed that TBC led to an obvious improvement in diabetic LEAD as it improved fibrous tissue proliferation and reduced arterial wall thickening. In addition, TBC could significantly increase the expression levels of HIF-1α, eNOS, and VEGFA proteins and genes while reducing that of calpain-1 and TGF-ß, suggesting that TBC can repair vascular injury. Compared with the model group, there were 47 differentially expressed genes in the whole blood of TBC groups, with 25 genes upregulated and 22 downregulated. Eighty-seven altered metabolites were identified from the serum samples. Combining the changes in differentially expressed genes and metabolites, we found that TBC could regulate arginine biosynthesis, phenylalanine metabolism, pyrimidine metabolism, arachidonic acid metabolism, pyrimidine metabolism, arachidonic acid metabolism, nucleotide metabolism, vitamin B6 metabolism and other metabolic pathways related to angiogenesis, immune-inflammatory response, and cell growth to improve diabetic LEAD. Conclusion: TBC improved vascular endothelial injury, apoptosis, lipid accumulation, liver and kidney function, and restored blood flow in the lower extremities of diabetic LEAD rats. The mechanism of TBC in the treatment of diabetic LEAD may be related to the modulation of inflammatory immunity, lipid metabolism, and amino acid metabolism. This study presented preliminary evidence to guide the use of TBC as a therapy option for diabetic LEAD.

20.
Food Chem Toxicol ; 188: 114682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657941

RESUMO

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.


Assuntos
Hidroxianisol Butilado , Células Endoteliais da Veia Umbilical Humana , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Humanos , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Hidroxianisol Butilado/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Ferroptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Movimento Celular/efeitos dos fármacos , Ferritinas/metabolismo , Ferritinas/genética , Cicloexilaminas , Oxirredutases , Fenilenodiaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA