Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(27): 8402-8409, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935418

RESUMO

Two-dimensional (2D) InSe and PtTe2 have drawn extensive attention due to their intriguing properties. However, the InSe monolayer is an indirect bandgap semiconductor with a low hole mobility. van der Waals (vdW) heterostructures produce interesting electronic and optoelectronic properties beyond the existing 2D materials and endow totally new device functions. Herein, we theoretically investigated the electronic structures, transport behaviors, and electric field tuning effects of the InSe/PtTe2 vdW heterostructures. The calculated results show that the direct bandgap type-II vdW heterostructures can be realized by regulating the stacking configurations of heterostructures. By applying an external electric field, the band alignment and bandgap of the heterostructures can also be flexibly modulated. Particularly, the hole mobility of the heterostructures is improved by 2 orders of magnitude to ∼103 cm2 V-1 s-1, which overcomes the intrinsic disadvantage of the InSe monolayer. The InSe/PtTe2 vdW heterostructures have great potential applications in developing novel optoelectronic devices.

2.
Small ; : e2401681, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923771

RESUMO

Perovskite is an emerging material with immense potential in the field of optoelectronics. 1D perovskite nanowires are crucial building blocks for the development of optoelectronic devices. However, producing perovskite nanowires with high quality and controlled alignment is challenging. In this study, the direct epitaxial growth of perovskite on oriented carbon nanotube (CNT) templates is presented through a chemical vapor deposition method. The deposition process of lead iodide and methylammonium iodide is systematically investigated, and a layer plus island growth mechanism is proposed to interpret the experimental observations. The aligned long CNTs serve as 1D templates and allow the growth of CNT@perovskite core-shell heterostructure with a high aspect ratio to withstand large deformation. The obtained 1D perovskite materials can be easily manipulated and transferred, enabling the facile preparation of microscale flexible devices. For proof of concept, a photodetector based on an individual CNT@methylammonium lead iodide heterostructure is fabricated. This work provides a new approach to prepare 1D hetero-nanostructure and may inspire the design of novel flexible nanophotodetectors.

3.
Chemphyschem ; 25(14): e202400304, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622796

RESUMO

In the field of photocatalysis, new heterojunction materials are increasingly explored to achieve efficient energy conversion and environmental catalysis under visible light and sunlight. This paper presents a study on two newly constructed two-dimensional van der Waals heterojunctions, Sc2CCl2/MoSe2 and Sc2CCl2/PtSe2, using density-functional theory. The study includes a systematic investigation of their geometrical structure, electronic properties, and optical properties. The results indicate that both heterojunctions are thermodynamically, kinetically, and mechanically stable. Additionally, Bader charge analysis reveals that both heterojunctions exhibit typical type II band properties. However, the band gap of the Sc2CCl2/MoSe2 heterojunction is only 1.18 eV, which is insufficient to completely cross the reduction and oxidation (REDOX) potential of 1.23 eV, whereas the band gap of Sc2CCl2/PtSe2 heterojunction is 1.49 eV, which is theoretically capable for water decomposition. The subsequent calculation of the Sc2CCl2/PtSe2 heterojunction demonstrate excellent hole carrier mobility and high efficiency light absorption in the visible light range, facilitating the separation of photogenerated electrons and holes. More importantly, Sc2CCl2/PtSe2 vdW type II heterojunction can achieve full water decomposition from pH 1 to pH 4, and its thermodynamic feasibility is confirmed by Gibbs free energy results. The aim of this study is to develop materials and analyses that will result in optoelectronic devices that are more efficient, stable, and sustainable.

4.
Nanotechnology ; 35(5)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879323

RESUMO

Two-dimensional (2D) materials have attracted more and more attention due to their excellent properties. In this work, we systematically explore the heat transport properties of Graphene-C3B (GRA-C3B) superlattices and van der Waals (vdW) heterostructures using molecular dynamics method. The effects of interface types and heat flow directions on the in-plane interfacial thermal resistance (ITRip) are analyzed. Obvious thermal rectification is detected in the more energy stable interface, GRA zigzag-C3B zigzag (ZZ) interface, which also has the minimum value of ITRip. The dependence of the superlattices thermal conductivity (k) of the ZZ interface on the period length (lp) is investigated. The results show that when thelpis 3.5 nm, thekreaches a minimum value of 35.52 W m-1K-1, indicating a transition stage from coherent phonon transport to incoherent phonon transport. Afterwards, the effects of system size, temperature, coupling strength and vacancy defect on the out-of-plane interfacial thermal resistance (ITRop) are evaluated. With the increase of temperature, coupling strength and vacancy defect, ITRopare found to reduce effectively due to the enhanced Umklapp phonon scattering and increased probability of energy transfer. Phonon density of states and phonon participation ratio is evaluated to reveal phonon behavior during heat transport. This work is expected to provide essential guidance for the thermal management of nanoelectronics based on 2D monolayer GRA and C3B.

5.
Nano Lett ; 22(7): 2725-2733, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293751

RESUMO

In van der Waals (vdW) heterostructures, the interlayer electron-phonon coupling (EPC) provides one unique channel to nonlocally engineer these elementary particles. However, limited by the stringent occurrence conditions, the efficient engineering of interlayer EPC remains elusive. Here we report a multitier engineering of interlayer EPC in WS2/boron nitride (BN) heterostructures, including isotope enrichments of BN substrates, temperature, and high-pressure tuning. The hyperfine isotope dependence of Raman intensities was unambiguously revealed. In combination with theoretical calculations, we anticipate that WS2/BN supercells could induce Brillouin-zone-folded phonons that contribute to the interlayer coupling, leading to a complex nature of broad Raman peaks. We further demonstrate the significance of a previously unexplored parameter, the interlayer spacing. By varying the temperature and high pressure, we effectively manipulated the strengths of EPC with on/off capabilities, indicating critical thresholds of the layer-layer spacing for activating and strengthening interlayer EPC. Our findings provide new opportunities to engineer vdW heterostructures with controlled interlayer coupling.

6.
Nanotechnology ; 33(50)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36137438

RESUMO

Transition metal dichalcogenides is an emerging 2D semiconducting material group which has excellent physical properties in the ultimately scaled thickness dimension. Specifically, van der Waals heterostructures hold the great promise in further advancing both the fundamental scientific knowledge and practical technological applications of 2D materials. Although 2D materials have been extensively studied for various sensing applications, temperature sensing still remains relatively unexplored. In this work, we experimentally study the temperature-dependent Raman spectroscopy and electrical conductivity of molybdenum disulfide (MoS2) and its heterostructures with platinum dichalcogenides (PtSe2and PtTe2) to explore their potential to become the next-generation temperature sensor. It is found that the MoS2-PtX2heterostructure shows the great promise as the high-sensitivity temperature sensor.

7.
Nano Lett ; 21(10): 4403-4409, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34000186

RESUMO

Van der Waals heterostructures composed of two-dimensional materials offer an unprecedented control over their properties and have attracted tremendous research interest in various optoelectronic applications. Here, we study the photoinduced charge transfer in graphene/WS2 heterostructure by time-dependent density functional theory molecular dynamics. Our results show that holes transfer from graphene to WS2 two times faster than electrons, and the occurrence of interlayer charge transfer is found correlated with vibrational modes of graphene and WS2. It is further demonstrated that the carrier dynamics can be efficiently modulated by external electric fields. Detailed analysis confirms that the carrier transfer rate at heterointerface is governed by the coupling between donor and acceptor states, which is the result of the competition between interlayer and intralayer relaxation processes. Our study provides insights into the understanding of ultrafast interlayer charge transfer processes in heterostructures and broadens their future applications in photovoltaic devices.

8.
Nanotechnology ; 32(41)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34214994

RESUMO

The 2D layered crystals can physically integrate with other non-2D components through van der Waals (vdW) interaction, forming mixed-dimensional heterostructures. As a new elemental 2D material, tellurium (Te) has attracted intense recent interest for high room-temperature mobility, excellent air-stability, and the easiness of scalable synthesis. To date, the Te is still in its research infancy, and optoelectronics with low-power consumption are less reported. Motivated by this, we report the fabrication of a mixed-dimensional vdW photodiode using 2D Te and 1D CdS nanobelt in this study. The heterojunction exhibits excellent self-powered photosensing performance and a broad response spectrum up to short-wave infrared. Under 520 nm wavelength, a high responsivity of 98 mA W-1is obtained at zero bias with an external quantum efficiency of 23%. Accordingly, the photo-to-dark current ratio and specific detectivity reach 9.2 × 103and 1.9 × 1011Jones due to the suppressed dark current. This study demonstrates the promising applications of Te/CdS vdW heterostructure in high-performance photodetectors. Besides, such a mixed-dimensional integration strategy paves a new way for device design, thus expanding the research scope for 2D Te-based optoelectronics.

9.
Nano Lett ; 19(6): 4097-4102, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117761

RESUMO

Using a simple setup to bend a flexible substrate, we demonstrate deterministic and reproducible in situ strain tuning of graphene electronic devices. Central to this method is the full hBN encapsulation of graphene, which preserves the exceptional quality of pristine graphene for transport experiments. In addition, the on-substrate approach allows one to exploit strain effects in the full range of possible sample geometries and at the same time guarantees that changes in the gate capacitance remain negligible during the deformation process. We use Raman spectroscopy to spatially map the strain magnitude in devices with two different geometries and demonstrate the possibility to engineer a strain gradient, which is relevant for accessing the valley degree of freedom with pseudomagnetic fields. Comparing the transport characteristics of a suspended device with those of an on-substrate device, we demonstrate that our new approach does not suffer from the ambiguities encountered in suspended devices.

10.
Nano Lett ; 19(5): 3295-3304, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31025869

RESUMO

Photogenerated nonequilibrium hot carriers play a key role in graphene's intriguing optoelectronic properties. Compared to conventional photoexcitation, plasmon excitation can be engineered to enhance and control the generation and dynamics of hot carriers. Here, we report an unusual negative differential photoresponse of plasmon-induced "ultrahot" electrons in a graphene-boron nitride-graphene tunneling junction. We demonstrate nanocrescent gold plasmonic nanostructures that substantially enhance the absorption of long-wavelength photons whose energy is greatly below the tunneling barrier and significantly boost the electron thermalization in graphene. We further analyze the generation and transfer of ultrahot electrons under different bias and power conditions. We find that the competition among thermionic emission, the carrier-cooling effect, and the field effect results in a hitherto unusual negative differential photoresponse in the photocurrent-bias plot. Our results not only exemplify a promising platform for detecting low-energy photons, enhancing the photoresponse, and reducing the dark current but also reveal the critically coupled pathways for harvesting ultrahot carriers.

11.
Adv Mater ; 36(30): e2400091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38573312

RESUMO

Crystallographic characteristics, including grain boundaries and crystallographic orientation of each grain, are crucial in defining the properties of two-dimensional materials (2DMs). To date, local microstructure analysis of 2DMs, which requires destructive and complex processes, is primarily used to identify unknown 2DM specimens, hindering the subsequent use of characterized samples. Here, a nondestructive large-area 2D crystallographic analytical method through sticky-note-like van der Waals (vdW) assembling-disassembling is presented. By the vdW assembling of veiled polycrystalline graphene (PCG) with a single-atom-thick single-crystalline graphene filter (SCG-filter), detailed crystallographic information of each grain in PCGs is visualized through a 2D Raman signal scan, which relies on the interlayer twist angle. The scanned PCGs are seamlessly separated from the SCG-filter using vdW disassembling, preserving their original condition. The remaining SCG-filter is then reused for additional crystallographic scans of other PCGs. It is believed that the methods can pave the way for advances in the crystallographic analysis of single-atom-thick materials, offering huge implications for the applications of 2DMs.

12.
ACS Nano ; 18(5): 4131-4139, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38206068

RESUMO

Intensive research on optoelectronic memory (OEM) devices based on two-dimensional (2D) van der Waals heterostructures (vdWhs) is being conducted due to their distinctive advantages for electrical-optical writing and multilevel storage. These features make OEM a promising candidate for the logic of reconfigurable operations. However, the realization of nonvolatile OEM with broadband absorption (from visible to infrared) and a high switching ratio remains challenging. Herein, we report a nonvolatile OEM based on a heterostructure consisting of rhenium disulfide (ReS2), hexagonal boron nitride (hBN) and tellurene (2D Te). The 2D Te-based floating-gate (FG) device exhibits excellent performance metrics, including a high switching on/off ratio (∼106), significant endurance (>1000 cycles) and impressive retention (>104 s). In addition, the narrow band gap of 2D Te endows the device with broadband optical programmability from the visible to near-infrared regions at room temperature. Moreover, by applying different gate voltages, light wavelengths, and laser powers, multiple bits can be successfully generated. Additionally, the device is specifically designed to enable reconfigurable inverter logic circuits (including AND and OR gates) through controlled electrical and optical inputs. These significant findings demonstrate that the 2D vdWhs with a 2D Te FG are a valuable approach in the development of high-performance OEM devices.

13.
ACS Sens ; 9(9): 4822-4832, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39264276

RESUMO

Constructing van der Waals (vdW) heterostructures is a prospective approach that is essential for developing a new generation of functional two-dimensional (2D) materials and designing new conceptual nanodevices. Using density-functional theory combined with a nonequilibrium Green's function approach allows for the theoretical and systematic exploration of the electronic structure, transport properties, and sensitivity of organic small molecules adsorbed on 2D C3B/graphene (Gra) and C3N/Gra vdW heterojunctions. Calculations show the metallic properties of C3B/Gra and C3N/Gra after the formation of heterojunctions. Interestingly, the heterojunctions C3B/Gra (C3N/Gra) for the adsorption of small organic molecules (C2H2, C2H4, CH3OH, CH4, and HCHO) at the C3B (C3N) side are sensitive to the chemisorption of C2H2 and C2H4. Similarly, the Gra/C3B is chemisorbed for both C2H2 and C2H4 when adsorbed on Gra side, while it is only chemisorbed for C2H2 in Gra/C3N. Interestingly, all heterojunctions on different sides are physisorbed for CH3OH, CH4, and HCHO. Furthermore, the calculated I-V curves demonstrate that the devices based on the adsorption of C2H2 and C2H4 at each side of the heterojunction have remarkable anisotropy, in with the current being considerably greater in the zigzag direction than in the armchair direction. More specifically, with C2H2 adsorbed on the Gra side, the sensitivity along the armchair direction is up to 85.0% for Gra/C3B and close to 100% for Gra/C3N. This study reveals that C3B/Gra (C3N/Gra) heterojunctions with high selectivity, high anisotropy, and excellent sensitivity are highly prospective 2D materials for applications, which further contributes new insights into the development of future electronic nanodevices.


Assuntos
Grafite , Grafite/química , Adsorção , Teoria da Densidade Funcional , Gases/química , Gases/análise , Compostos Orgânicos/química , Nitrilas/química
14.
ACS Appl Mater Interfaces ; 16(11): 13927-13937, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456299

RESUMO

Two-dimensional van der Waals (2D vdW) heterostructure photodetectors have garnered significant attention for their potential applications in next-generation optoelectronic systems. However, current 2D vdW photodetectors inevitably encounter compromises between responsivity, detectivity, and response time due to the absence of multilevel regulation for free and photoexcited carriers, thereby restricting their widespread applications. To address this challenge, we propose an efficient 2D WS2/CuInP2S6 vdW heterostructure photodetector by combining band engineering and ferroelectric modulation. In this device, the asymmetric conduction and valence band offsets effectively block the majority carriers (free electrons), while photoexcited holes are efficiently tunneled and rapidly collected by the bottom electrode. Additionally, the ferroelectric CuInP2S6 layer generates polarization states that reconfigure the built-in electric field, reducing dark current and facilitating the separation of photocarriers. Moreover, photoelectrons are trapped during long-distance lateral transport, resulting in a high photoconductivity gain. Consequently, the device achieves an impressive responsivity of 88 A W-1, an outstanding specific detectivity of 3.4 × 1013 Jones, and a fast response time of 37.6/371.3 µs. Moreover, the capability of high-resolution imaging under various wavelengths and fast optical communication has been successfully demonstrated using this device, highlighting its promising application prospects in future optoelectronic systems.

15.
ACS Nano ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39267593

RESUMO

Two-dimensional (2D) magnetic semiconductors offer an intriguing platform for investigating magneto-optoelectronic properties and hold immense potential in developing prospective devices when they are combined with valley electronic materials like 2D transition-metal dichalcogenides. Herein, we report various magneto-optoelectronic response features of the vertical hBN-FLG-CrI3-WSe2-FLG-hBN van der Waals heterostructure. Through a sensible layout and exquisite manipulation, an hBN-FLG-CrI3-FLG-hBN heterostructure was also fabricated on identical CrI3 and FLGs for better comparison. Our results show that the WSe2-CrI3 heterostructure, acting as a p-n heterojunction, has advantageous capability in light detection, especially in self-powered light helicity detecting. In the WSe2-CrI3 heterojunction, the absolute value of photocurrent IPH exhibits obvious asymmetry with respect to the bias V, with the IPH of reversely biased WSe2-CrI3 p-n heterojunction being larger. When the CrI3 is fully spin-polarized under a 3 T magnetic field, the reversely biased WSe2-CrI3 heterojunction exhibits advantageous capability in light helicity detecting. Both the short-circuit currents ISC and IPH show one-cycle fluctuation behaviors when the quarter-wave plate rotates 180°, and the corresponding photoresponsivity helicities can be as high as 18.0% and 20.1%, respectively. We attribute the spin-enhanced photovoltaic effect in the WSe2-CrI3 heterojunction and its contribution to circularly polarized light detection to the coordination function of the spin-filter CrI3, the valley electronic monolayer WSe2, and the spin-dependent charge transfer between them. Our work helps us understand the interplay between the magnetic and optoelectronic properties of WSe2-CrI3 heterojunctions and promotes the developing progress of prospective 2D spin optoelectronic devices.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38684053

RESUMO

Metal-oxide-semiconductor field-effect transistors as basic electronic devices of integrated circuits have been greatly developed and widely used in the past decades. However, as the thickness of the conducting channel decreases, the interface electronic scattering between the gate oxide layer and the channel significantly impacts the performance of the transistor. To address this issue, van der Waals heterojunction field-effect transistors (vdWJFETs) have been proposed using two-dimensional semiconductors, which utilize the built-in electric field at the sharp van der Waals interface to regulate the channel conductance without the need of a complex gate oxide layer. In this study, a novel dual-junction vdWJFET composed of a MoS2 channel and a Te nanosheet gate has been developed. This device achieves an ultralow subthreshold swing (SS) and an extremely low current hysteresis, greatly surpassing the single-junction vdWJFET. In the transistor, the SS decreases from 475.04 to 68.3 mV dec-1, nearly approaching the theoretical limit of 60 mV dec-1 at room temperature. The pinch-off voltage (Vp) decreases from -4.5 to -0.75 V, with a current hysteresis of ∼10 mV and a considerable field-effect mobility (µ) of 36.43 cm2 V-1 s-1. The novel dual-junction vdWJFET provides a new approach to realize a transistor with a theoretical ideal SS and a negligible current hysteresis toward low-power electronic applications.

17.
J Mol Graph Model ; 127: 108694, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38103400

RESUMO

Efficient strategies for modifying the characteristics of van der Waals (vdW) layered materials in a precise and reversible mode remain challenging. Our suggested method for customization entails the implementation of layer-sliding and intercalation. In this work, a norm-conserving approach within the context of density functional theory has been used to examine the electronic and optical properties of two-dimensional (2D) van der Waals heterostructure (vdWHS), which is modeled by using 2D zirconium dioxide (1T-ZrO2) and molybdenum disulfide (1T-MoS2) monolayers of similar phase. Both contributing monolayers have similar lattice structures, with a minimum lattice mismatch of 0.83 %, and have corrugation on both sides that can successfully retain foreign species at the vdW-gap. In the next step, interfacial engineering through Li-intercalation and layer-sliding was employed to modify physical properties of the vdWHS. It is the worth mentioning that a narrow bandgap of 0.102 eV (0.22 eV) has been observed in the unintercalated ZrO2/MoS2 vdWHS when employing PW-LDA (hybrid-functional). Li-intercalation and sliding process significantly influenced the electronic properties of the studied vdWHS. Furthermore, un-slided and fully-slided Li-intercalated vdWHS exhibit an increase in the vdW-gap by 3.78 % and 27.14 %, respectively, as compared to unintercalated vdWHS. To further understand the electrical behaviour at the interface of contributing monolayers, a comparative study has also been made for the variation in the planar average charge density difference, charge transfer, and interface dipole moment for unintercalated and intercalated vdWHS. In the unintercalated vdWHS, the calculated values of ΔQ and µ(z) provide evidence of significant charge transfer from 1T-ZrO2 to 1T-MoS2 before sliding, whereas in the fully-slided vdWHS, there is 80.11 % more charge transfer from 1T-MoS2 to 1T-ZrO2. Li-intercalation increases the magnitude of ΔQ (by 90.27 %) near 1T-MoS2, indicating a sufficient quantity of charge transfer from the 1T-MoS2 monolayer. The results of the anisotropic analysis show that the calculated in-plane and out-of-plane components of the real and imaginary parts of the dielectric function differ significantly. The optical absorption and energy losses of Li-intercalated vdWHS experience a substantial decrease of about 90 % and 50 %, respectively, as compared to unintercalated vdWHS. Our employed method promotes the notion that interfacial engineering through simultaneous layer-sliding and intercalation approach can be used to regulate and modify the physical properties of 2D insulator/metal based vdWHS.


Assuntos
Lítio , Molibdênio , Anisotropia , Eletricidade , Eletrônica , Fatores de Transcrição
18.
J Phys Condens Matter ; 36(30)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38653260

RESUMO

Low-dimensional materials with prominent thermoelectric (TE) effect play a pivotal role in realizing state-of-the-art nanoscale TE devices. The fusion of TE effect with the magnetism through seamless integration of TE and magnetic materials in the 2D limit offers access to control longitudinal as well as transverse TE properties via magnetic proximity effect. Herein, we design a van der Waals (vdW) heterostructure of metallic 1T-MoS2with promising TE properties and a layer-dependent magnetic CrI3material. The result highlights exotic electronic and magnetic configurations of the designed monolayer-CrI3/1T-MoS2vdW heterostructure, which show magnetically-coupled TE characteristics. The observed remarkable magnetic proximity stems from large magnetic anisotropy energy and spin polarization, which are found to be 2.21 meV Cr-1and 12.30%, respectively. To this end, the semiconducting CrI3layer with intrinsic magnetism leads to efficient control and tunability of the observed spin-correlated anomalous Nernst effect. Moreover, a large dimensionless figure of merit of ∼6 and a power factor of∼3.8×1011/τ∘ Wm-1K-2s-1near the Fermi level at 300 K endorse the rejuvenated TE effect. The strong relativistic spin-orbit coupling validates the significant correlation of TE properties with intrinsic magnetic configuration. The present study underscores the significance of the magnetic proximity-governed TE effect in vdW heterostructures to engineer low-dimensional TE devices.

19.
ACS Nano ; 17(8): 7384-7393, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37052666

RESUMO

Two-dimensional materials and their heterostructures have thus far been identified as leading candidates for nanoelectronics owing to the near-atom thickness, superior electrostatic control, and adjustable device architecture. These characteristics are indeed advantageous for neuro-inspired computing hardware where precise programming is strongly required. However, its successful demonstration fully utilizing all of the given benefits remains to be further developed. Herein, we present van der Waals (vdW) integrated synaptic transistors with multistacked floating gates, which are reconfigured upon surface oxidation. When compared with a conventional device structure with a single floating gate, our double-floating-gate (DFG) device exhibits better nonvolatile memory performance, including a large memory window (>100 V), high on-off current ratio (∼107), relatively long retention time (>5000 s), and satisfactory cyclic endurance (>500 cycles), all of which can be attributed to its increased charge-storage capacity and spatial redistribution. This facilitates highly effective modulation of trapped charge density with a large dynamic range. Consequently, the DFG transistor exhibits an improved weight update profile in long-term potentiation/depression synaptic behavior for nearly ideal classification accuracies of up to 96.12% (MNIST) and 81.68% (Fashion-MNIST). Our work adds a powerful option to vdW-bonded device structures for highly efficient neuromorphic computing.

20.
Small Methods ; 7(6): e2201679, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929317

RESUMO

Memristive switching devices with electrically and optically invoked synaptic behaviors show great promise in constructing an artificial biological visual system. Through rational design and integration, 2D materials and their van der Waals (vdW) heterostructures can be applied to realize multifunctional optoelectronic devices. Here, a multifunctional optoelectronic synaptic memtransistor based on a SnSe/MoS2 vdW p-n heterojunction to simulate the human biological visual system is reported. By employing simple mild UV-ozone treatment, the device exhibits reversible resistive switching (RS) behavior with switching ratio up to 103 . The retina-like selective response to different input light wavelengths is activated, as well as programmable multilevel resistance states and long-term synaptic plasticity. Moreover, memory and logic functions analogous to those found in the visual cortex of the brain are performed by controlling the optical and electrical input signals. This work proposes a feasible strategy to modulate RS in vdW heterostructures for memristive devices, which show significant potential for neuromorphic processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA