Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 240(1): 1-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346066

RESUMO

Snake venom is produced, transported and delivered by the sophisticated venom delivery system (VDS). When snakes bite, the venom travels from the venom gland through the venom duct into needle-like fangs that inject it into their prey. To counteract breakages, fangs are continuously replaced throughout life. Currently, the anatomy of the connection between the duct and the fang has not been described, and the mechanism by which the duct is reconnected to the replacement fang has not been identified. We examined the VDS in 3D in representative species from two families and one subfamily (Elapidae, Viperidae, Atractaspidinae) using contrast-enhanced microCT (diceCT), followed by dissection and histology. We observed that the venom duct bifurcates immediately anterior to the fangs so that both the original and replacement fangs are separately connected and functional in delivering venom. When a fang is absent, the canal leading to the empty position is temporarily closed. We found that elapid snakes have a crescent-shaped venom reservoir where venom likely pools before it enters the fang. These findings form the final piece of the puzzle of VDS anatomy in front-fanged venomous snakes. Additionally, they provide further evidence for independent evolution of the VDS in these three snake taxa.


Assuntos
Dente , Viperidae , Animais , Humanos , Venenos de Serpentes , Serpentes/anatomia & histologia , Dente/anatomia & histologia
2.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200678

RESUMO

The venom duct transcriptomes and proteomes of the cryptic cone snail species Virroconus ebraeus and Virroconus judaeus were obtained and compared. The most abundant and shared conotoxin precursor superfamilies in both species were M, O1, and O2. Additionally, three new putative conotoxin precursor superfamilies (Virro01-03) with cysteine pattern types VI/VII and XVI were identified. The most expressed conotoxin precursor superfamilies were SF-mi2 and M in V. ebraeus, and Cerm03 and M in V. judaeus. Up to 16 conotoxin precursor superfamilies and hormones were differentially expressed between both species, and clustered into two distinct sets, which could represent adaptations of each species to different diets. Finally, we predicted, with machine learning algorithms, the 3D structure model of selected venom proteins including the differentially expressed Cerm03 and SF-mi2, an insulin type 3, a Gastridium geographus GVIA-like conotoxin, and an ortholog to the Pionoconus magus ω-conotoxin MVIIA (Ziconotide).


Assuntos
Caramujo Conus , Venenos de Moluscos/química , Proteínas/química , Algoritmos , Animais , Aprendizado de Máquina , Proteínas/isolamento & purificação , Proteoma , Especificidade da Espécie , Transcriptoma
3.
Mar Drugs ; 17(3)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917600

RESUMO

The venom of each Conus species consists of a diverse array of neurophysiologically active peptides, which are mostly unique to the examined species. In this study, we performed high-throughput transcriptome sequencing to extract and analyze putative conotoxin transcripts from the venom ducts of 3 vermivorous cone snails (C. caracteristicus, C. generalis, and C. quercinus), which are resident in offshore waters of the South China Sea. In total, 118, 61, and 48 putative conotoxins (across 22 superfamilies) were identified from the 3 Conus species, respectively; most of them are novel, and some possess new cysteine patterns. Interestingly, a series of 45 unassigned conotoxins presented with a new framework of C-C-C-C-C-C, and their mature regions were sufficiently distinct from any other known conotoxins, most likely representing a new superfamily. O- and M-superfamily conotoxins were the most abundant in transcript number and transcription level, suggesting their critical roles in the venom functions of these vermivorous cone snails. In addition, we identified numerous functional proteins with potential involvement in the biosynthesis, modification, and delivery process of conotoxins, which may shed light on the fundamental mechanisms for the generation of these important conotoxins within the venom duct of cone snails.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Animais , China , Conotoxinas/metabolismo , Caramujo Conus/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de RNA , Transcriptoma
4.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563163

RESUMO

The primary objective of this study was to realize the large-scale discovery of conotoxin sequences from different organs (including the venom duct, venom bulb and salivary gland) of the vermivorous Oak cone snail, Conus quercinus. Using high-throughput transcriptome sequencing, we identified 133 putative conotoxins that belong to 34 known superfamilies, of which nine were previously reported while the remaining 124 were novel conotoxins, with 17 in new and unassigned conotoxin groups. A-, O1-, M-, and I2- superfamilies were the most abundant, and the cysteine frameworks XIII and VIII were observed for the first time in the A- and I2-superfamilies. The transcriptome data from the venom duct, venom bulb and salivary gland showed considerable inter-organizational variations. Each organ had many exclusive conotoxins, and only seven of all the inferred mature peptides were common in the three organs. As expected, most of the identified conotoxins were synthesized in the venom duct at relatively high levels; however, a number of conotoxins were also identified in the venom bulb and the salivary gland with very low transcription levels. Therefore, various organs have different conotoxins with high diversity, suggesting greater contributions from several organs to the high-throughput discovery of new conotoxins for future drug development.


Assuntos
Conotoxinas , Caramujo Conus , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/fisiologia , Animais , Conotoxinas/biossíntese , Conotoxinas/genética , Caramujo Conus/genética , Caramujo Conus/metabolismo
5.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986377

RESUMO

Cone snails are biomedically important sources of peptide drugs, but it is not known whether snail-associated bacteria affect venom chemistry. To begin to answer this question, we performed 16S rRNA gene amplicon sequencing of eight cone snail species, comparing their microbiomes with each other and with those from a variety of other marine invertebrates. We show that the cone snail microbiome is distinct from those in other marine invertebrates and conserved in specimens from around the world, including the Philippines, Guam, California, and Florida. We found that all venom ducts examined contain diverse 16S rRNA gene sequences bearing closest similarity to Stenotrophomonas bacteria. These sequences represent specific symbionts that live in the lumen of the venom duct, where bioactive venom peptides are synthesized.IMPORTANCE In animals, symbiotic bacteria contribute critically to metabolism. Cone snails are renowned for the production of venoms that are used as medicines and as probes for biological study. In principle, symbiotic bacterial metabolism could either degrade or synthesize active venom components, and previous publications show that bacteria do indeed contribute small molecules to some venoms. Therefore, understanding symbiosis in cone snails will contribute to further drug discovery efforts. Here, we describe an unexpected, specific symbiosis between bacteria and cone snails from around the world.


Assuntos
Venenos de Moluscos/química , Caramujos/microbiologia , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/fisiologia , Simbiose , Animais , DNA Bacteriano/genética , Microbiota , Venenos de Moluscos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Caramujos/classificação , Caramujos/fisiologia , Stenotrophomonas/genética
6.
BMC Genomics ; 17: 401, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27229931

RESUMO

BACKGROUND: Although diet is believed to be a major factor underlying the evolution of venom, few comparative studies examine both venom composition and diet across a radiation of venomous species. Cone snails within the family, Conidae, comprise more than 700 species of carnivorous marine snails that capture their prey by using a cocktail of venomous neurotoxins (conotoxins or conopeptides). Venom composition across species has been previously hypothesized to be shaped by (a) prey taxonomic class (i.e., worms, molluscs, or fish) and (b) dietary breadth. We tested these hypotheses under a comparative phylogenetic framework using ecological data from past studies in conjunction with venom duct transcriptomes sequenced from 12 phylogenetically disparate cone snail species, including 10 vermivores (worm-eating), one molluscivore, and one generalist. RESULTS: We discovered 2223 unique conotoxin precursor peptides that encoded 1864 unique mature toxins across all species, >90 % of which are new to this study. In addition, we identified two novel gene superfamilies and 16 novel cysteine frameworks. Each species exhibited unique venom profiles, with venom composition and expression patterns among species dominated by a restricted set of gene superfamilies and mature toxins. In contrast with the dominant paradigm for interpreting Conidae venom evolution, prey taxonomic class did not predict venom composition patterns among species. We also found a significant positive relationship between dietary breadth and measures of conotoxin complexity. CONCLUSIONS: The poor performance of prey taxonomic class in predicting venom components suggests that cone snails have either evolved species-specific expression patterns likely as a consequence of the rapid evolution of conotoxin genes, or that traditional means of categorizing prey type (i.e., worms, mollusc, or fish) and conotoxins (i.e., by gene superfamily) do not accurately encapsulate evolutionary dynamics between diet and venom composition. We also show that species with more generalized diets tend to have more complex venoms and utilize a greater number of venom genes for prey capture. Whether this increased gene diversity confers an increased capacity for evolutionary change remains to be tested. Overall, our results corroborate the key role of diet in influencing patterns of venom evolution in cone snails and other venomous radiations.


Assuntos
Ração Animal , Caramujo Conus , Peçonhas , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Caramujo Conus/genética , Caramujo Conus/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Peptídeos/genética , Filogenia , Transcriptoma , Peçonhas/química
7.
Toxins (Basel) ; 16(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39195758

RESUMO

Venomous marine gastropods of the superfamily Conoidea possess a rich arsenal of toxins, including neuroactive toxins. Venom adaptations might have played a fundamental role in the radiation of conoideans; nevertheless, there is still no knowledge about the venom of the most diversified family of the group: Raphitomidae Bellardi, 1875. In this study, transcriptomes were produced from the carcase, salivary glands, and proximal and distal venom ducts of the northeastern Atlantic species Raphitoma purpurea (Montagu, 1803). Using a gut barcoding approach, we were also able to report, for the first time, molecular evidence of a vermivorous diet for the genus. Transcriptomic analyses revealed over a hundred putative venom components (PVC), including 69 neurotoxins. Twenty novel toxin families, including some with high levels of expansion, were discovered. No significant difference was observed between the distal and proximal venom duct secretions. Peptides related to cone snail toxins (Cerm06, Pgam02, and turritoxin) and other venom-related proteins (disulfide isomerase and elevenin) were retrieved from the salivary glands. These salivary venom components may constitute ancestral adaptations for venom production in conoideans. Although often neglected, salivary gland secretions are of extreme importance for understanding the evolutionary history of conoidean venom.


Assuntos
Venenos de Moluscos , Caramujos , Animais , Venenos de Moluscos/genética , Caramujos/genética , Transcriptoma , Glândulas Salivares/metabolismo
8.
Toxins (Basel) ; 13(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918654

RESUMO

Spiders are one of the most successful groups of venomous animals, but surprisingly few species have been examined in sufficient detail to determine the structure of their venom systems. To learn more about the venom system of the family Araneidae (orb-weavers), we selected the wasp spider (Argiope bruennichi) and examined the general structure and morphology of the venom apparatus by light microscopy. This revealed morphological features broadly similar to those reported in the small number of other spiders subject to similar investigations. However, detailed evaluation of the venom duct revealed the presence of four structurally distinct compartments. We propose that these subunits facilitate the expression and secretion of venom components, as previously reported for similar substructures in pit vipers and cone snails.


Assuntos
Estruturas Animais/anatomia & histologia , Venenos de Aranha/metabolismo , Aranhas/anatomia & histologia , Estruturas Animais/metabolismo , Animais , Via Secretória , Picada de Aranha , Aranhas/metabolismo
9.
Toxicon ; 200: 198-202, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34390711

RESUMO

The scorpion venom system plays a critical role in capturing prey and defending against predators. In this study, the rapid developmental process of the first instar telson was first presented. The small amount of venom in the first instar could be stored well by the distorted and blocked venom ducts, which disappeared in the older scorpions. This special developmental process of the first instar telson revealed the notable survival ability of scorpions.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , Venenos de Escorpião/toxicidade
10.
J Proteomics ; 194: 37-48, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30593932

RESUMO

Putative prolyl-4-hydroxylase (P4H) α-subunit sequences have been extracted by mining transcriptomic data obtained from seven cone snail species C. amadis, C. monile, C. araneosus, C. miles, C. litteratus, C. frigidus, and C. ebraeus. Sequences ranging from 518 to 559 residues have been compared with representative animal P4H sequences. The α-subunit consists of an N-terminus double domain, involved in dimerization and substrate binding, while the C-terminus contains the catalytic domain. Definitive functional annotation of the cone snail sequences has been achieved by an analysis of conserved residues responsible for catalytic function, specific conformational features, and subunit interactions, using two independent structures of the double domain, and the catalytic domain, previously reported in the literature. The variability of proline hydroxylation in conotoxins is illustrated by a mass spectrometric analysis of C. amadis venom. Site specific hydroxylation and the presence of peptides with multiple proline residues, resistant to modification, suggests that sequence and conformational effects may determine the substrate specificity of the Conus prolyl-4-hydroxylases. SIGNIFICANCE: Proline hydroxylation is a widely observed post translational modification, with collagen being the pre-eminent example. Hydroxylation of proline is also widely observed in conotoxins, which are a major component of marine cone snail venom. This paper describes newly identified prolyl-4-hydroxylase sequences, using transcriptome data from seven Conus species. The predicted functional annotation of prolyl-4-hydroxylase sequences was carried out using two available crystal structures of independent domains. The mass spectrometric characterisation of proline/hydroxyproline containing peptides in C. amadis venom confirms sequence specific hydroxylation in Conus venom as shown previously by others.


Assuntos
Conotoxinas/metabolismo , Caramujo Conus/enzimologia , Prolil Hidroxilases/metabolismo , Transcriptoma , Animais , Domínio Catalítico , Conotoxinas/química , Perfilação da Expressão Gênica , Hidroxilação , Espectrometria de Massas , Prolina/química , Prolina/metabolismo , Prolil Hidroxilases/química
11.
Gigascience ; 5: 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27087938

RESUMO

BACKGROUND: The venom of predatory marine cone snails mainly contains a diverse array of unique bioactive peptides commonly referred to as conopeptides or conotoxins. These peptides have proven to be valuable pharmacological probes and potential drugs because of their high specificity and affinity to important ion channels, receptors and transporters of the nervous system. Most previous studies have focused specifically on the conopeptides from piscivorous and molluscivorous cone snails, but little attention has been devoted to the dominant vermivorous species. RESULTS: The vermivorous Chinese tubular cone snail, Conus betulinus, is the dominant Conus species inhabiting the South China Sea. The transcriptomes of venom ducts and venom bulbs from a variety of specimens of this species were sequenced using both next-generation sequencing and traditional Sanger sequencing technologies, resulting in the identification of a total of 215 distinct conopeptides. Among these, 183 were novel conopeptides, including nine new superfamilies. It appeared that most of the identified conopeptides were synthesized in the venom duct, while a handful of conopeptides were identified only in the venom bulb and at very low levels. CONCLUSIONS: We identified 215 unique putative conopeptide transcripts from the combination of five transcriptomes and one EST sequencing dataset. Variation in conopeptides from different specimens of C. betulinus was observed, which suggested the presence of intraspecific variability in toxin production at the genetic level. These novel conopeptides provide a potentially fertile resource for the development of new pharmaceuticals, and a pathway for the discovery of new conotoxins.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Transcriptoma , Sequência de Aminoácidos , Animais , China , Caramujo Conus/classificação , Perfilação da Expressão Gênica/métodos , Variação Genética , Dados de Sequência Molecular , Oceanos e Mares , Peptídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
12.
Toxicon ; 92: 66-74, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305551

RESUMO

The repertoire of venom peptides produced by Conoidean snails has shown to be useful for therapeutic and neuropharmacologic applications. Despite their dominance in terms of species number, the Family Turridae is the least studied among their other Conoidean counterparts. They provide a vast resource of pharmacological material only hindered by the inaccessibility of their deep water habitat for sample collection and their small size that allows only a limited amount of material from their venom duct amenable for analysis. Using high-throughput transcriptome sequencing, toxin transcripts can be extracted bioinformatically to fast-track toxin discovery. This approach was utilized on the venom duct transcriptomes of three species of turrids: Unedogemmula bisaya, Crassispira cerithina, and Gemmula speciosa and resulted in the discovery of 41, 22, and 74 putative turrid toxin genes, respectively. Comparisons among these turrid toxin genes to conotoxins show (i) similar superfamily precursors between conotoxins and turrid toxins for the classes D, I2, L, M, O1, O2, and P, (ii) a wider range of peptide lengths of up to 190 amino acids long for mature turritoxin, and (iii) nondisulfide-rich turritoxins with the B2 signal sequence. Novel superfamilies and cysteine frameworks including a novel 14-cysteine residue framework were also obtained.


Assuntos
Conotoxinas/genética , Caramujos/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Biologia Computacional , Conotoxinas/metabolismo , Dados de Sequência Molecular , Peptídeos/genética , Análise de Sequência de DNA , Caramujos/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA