Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257419

RESUMO

This study aimed to evaluate the effect of two circulation modes of a plasma deodorization unit on the air environment of pig-fattening houses in winter. Two pig-fattening houses were selected, one of which was installed with a plasma deodorizing device with two modes of operation, alternating internal and external circulation on a day-by-day basis. The other house did not have any form of treatment and was used as the control house. Upon installing the system, this study revealed that in the internal circulation mode, indoor temperature and humidity were sustained at elevated levels, with the NH3 and H2S concentrations decreasing by 63.87% and 100%, respectively, in comparison to the control house. Conversely, in the external circulation mode, the indoor temperature and humidity remained subdued, accompanied by a 16.43% reduction in CO2 concentration. The adept interchange between these two operational modes facilitates the regulation of indoor air quality within a secure environment. This not only effectively diminishes deleterious gases in the pig-fattening house but also achieves the remote automation of environmental monitoring and hazardous gas management; thereby, it mitigates the likelihood of diseases and minimizes breeding risks.

2.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679383

RESUMO

Infectious diseases such as the COVID-19 pandemic have necessitated preventive measures against the spread of indoor infections. There has been increasing interest in indoor air quality (IAQ) management. Air quality can be managed simply by alleviating the source of infection or pollution, but the person within a space can be the source of infection or pollution, thus necessitating an estimation of the exact number of people occupying the space. Generally, management plans for mitigating the spread of infections and maintaining the IAQ, such as ventilation, are based on the number of people occupying the space. In this study, carbon dioxide (CO2)-based machine learning was used to estimate the number of people occupying a space. For machine learning, the CO2 concentration, ventilation system operation status, and indoor-outdoor and indoor-corridor differential pressure data were used. In the random forest (RF) and artificial neural network (ANN) models, where the CO2 concentration and ventilation system operation modes were input, the accuracy was highest at 0.9102 and 0.9180, respectively. When the CO2 concentration and differential pressure data were included, the accuracy was lowest at 0.8916 and 0.8936, respectively. Future differential pressure data will be associated with the change in the CO2 concentration to increase the accuracy of occupancy estimation.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , Monitoramento Ambiental , Dióxido de Carbono/análise , Pandemias , COVID-19/epidemiologia , Poluição do Ar em Ambientes Fechados/análise , Ventilação
3.
J Occup Environ Hyg ; 20(7): 289-303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084391

RESUMO

The objective of this study is to evaluate a prototype local ventilation system (LVS) intended to reduce retail store workers' exposure to aerosols. The evaluation was carried out in a large aerosol test chamber where relatively uniform concentrations of polydisperse sodium chloride and glass-sphere particles were generated to test the system with nano- and micro-size particles. In addition, a cough simulator was constructed to mimic aerosols released by mouth breathing and coughing. Particle reduction efficiencies of the LVS were determined in four different experimental conditions using direct reading instruments and inhalable samplers. The particle reduction efficiency (%) depended on the position beneath the LVS, but the percentage was consistently high at the LVS center as follows: (1) > 98% particle reduction relative to background aerosols; (2) > 97% in the manikin's breathing zone relative to background aerosols; (3) > 97% during mouth breathing and coughing simulation; and (4) > 97% with a plexiglass barrier installation. Lower particle reduction (<70%) was observed when the LVS airflow was disturbed by background ventilation airflow. The lowest particle reduction (<20%) was observed when the manikin was closest to the simulator during coughing.


Assuntos
Exposição por Inalação , Respiração Bucal , Humanos , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios
4.
J Korean Med Sci ; 37(36): e273, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123962

RESUMO

Amid the coronavirus disease 2019 era, concern about the safety of surgical teams related to surgical smoke (SS) is rising. As simple ventilation improvement methods (SVIMs), we replaced 4 of the 8 supply diffusers with a direction-adjustable louver-type, closed 2 of the 4 exhaust grills, and strengthened the sealing of the doorway. Dynamic changes in the concentration of particulate matter (PM) with sizes of < 1.0 µm (PM1.0) were measured using low-cost PM meters (LCPMs) at eight locations in the operating room (OR). SS concentration up to 4 minutes at the location of the surgeon, first assistant, and scrub nurse before and after SVIMs application decreased from 65.4, 38.2, 35.7 µg/m3 to 9.5, 0.1 and 0.7 µg/m3 respectively. A similar decrease was observed in the other 5 locations. SVIMs could effectively control SS and the LCPM was also effective in measuring SS in the OR or other spaces of the hospital.


Assuntos
COVID-19 , Cirurgiões , Humanos , Salas Cirúrgicas , Fumaça/efeitos adversos
5.
Clin Infect Dis ; 73(6): e1356-e1364, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33851214

RESUMO

BACKGROUND: Nosocomial outbreaks with superspreading of coronavirus disease 2019 due to a possible airborne transmission have not been reported. METHODS: Epidemiological analysis, environmental samplings, and whole-genome sequencing (WGS) were performed for a hospital outbreak. RESULTS: A superspreading event that involved 12 patients and 9 healthcare workers (HCWs) occurred within 9 days in 3 of 6 cubicles at an old-fashioned general ward with no air exhaust built within the cubicles. The environmental contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was significantly higher in air grilles (>2 m from patients' heads and not within reach) than on high-touch clinical surfaces (36.4%, 8 of 22 vs 3.4%, 1 of 29, P = .003). Six (66.7%) of 9 contaminated air exhaust grilles were located outside patient cubicles. The clinical attack rate of patients was significantly higher than of HCWs (15.4%, 12 of 78 exposed patients vs 4.6%, 9 of 195 exposed HCWs, P = .005). Moreover, the clinical attack rate of ward-based HCWs was significantly higher than of nonward-based HCWs (8.1%, 7 of 68 vs 1.8%, 2 of 109, P = .045). The episodes (mean ±â€…standard deviation) of patient-care duty assignment in the cubicles was significantly higher among infected ward-based HCWs than among noninfected ward-based HCWs (6.0 ±â€…2.4 vs 3.0 ±â€…2.9, P = .012) during the outbreak period. The outbreak strains belong to SARS-CoV-2 lineage B.1.36.27 (GISAID clade GH) with the unique S-T470N mutation on WGS. CONCLUSIONS: This nosocomial point source superspreading event due to possible airborne transmission demonstrates the need for stringent SARS-CoV-2 screening at admission to healthcare facilities and better architectural design of ventilation systems to prevent such outbreaks. Portable high-efficiency particulate filters were installed in each cubicle to improve ventilation before resumption of clinical service.


Assuntos
COVID-19 , Infecção Hospitalar , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Pessoal de Saúde , Hospitais , Humanos , SARS-CoV-2
6.
Indoor Air ; 30(3): 500-511, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31903622

RESUMO

In this study, we investigated the effects of environmental factors such as airflow velocity, relative humidity (RH), temperature, and duct reflectance on the performance of in-duct UVC lamps. Staphylococcus epidermidis, Pseudomonas alcaligenes, and Escherichia coli were used as the test bacteria. The UV irradiance, disinfection efficacy, and UV susceptibility constant (Z value) of the test bacteria were experimentally determined. The results showed that the UV disinfection efficacy decreased as the airflow velocity and RH increased. The maximum UV disinfection efficacy was obtained at temperature of 20-21°C compared with the performance at lower temperature (15-16°C) and higher temperature (25-26°C). When the RH increased from 50% to 90%, the Z values of airborne bacteria reduced by 40%, 60%, and 38% for S epidermidis, P alcaligenes, and E coli, respectively. Besides, susceptibility constants had lower values under both cooling temperature (15-16°C) and heating temperature (25-26°C) compared with that under the temperature of 20-21°C. It was observed that S epidermidis generally had the highest resistance to the UV irradiance. The results also showed that the UV disinfection efficacy was lower in the duct with a black surface than in the clean duct.


Assuntos
Desinfecção/métodos , Ventilação , Microbiologia do Ar , Raios Ultravioleta
7.
J Occup Environ Hyg ; 16(4): 294-301, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30852983

RESUMO

International guidelines recommend the use of ventilation systems in operating rooms to reduce the concentration of potentially hazardous substances such as anesthetic gases. The exhaust air grilles of these systems are typically located in the lower corners of the operating room and pick up two-thirds of the air volume, whereas the final third is taken from near the ceiling, which guarantees an optimal perfusion of the operating room with a sterile filtered air supply. However, this setup is also employed because anesthetic gases have a higher molecular weight than the components of air and should pool on the floor if movement is kept to a minimum and if a ventilation system with a unidirectional displacement flow is employed. However, this anticipated pooling of volatile anesthetics at the floor level has never been proven. Thus, we herein investigated the flow behaviors of isoflurane, sevoflurane, and carbon dioxide (for comparison) in a measuring chamber sized 2.46 × 1.85 × 5.40 m with a velocity of 0.3 m/sec and a degree of turbulence <20%. Gas concentrations were measured at 1,728 measuring positions throughout the measuring chamber, and the flow behaviors of isoflurane and sevoflurane were found to be similar, with an overlap of 90%. The largest spread of both gases was 55 cm at 5.4 m from the emission source. Interestingly, neither isoflurane nor sevoflurane was detected at floor level, but a continuous cone-like spreading was observed due to gravity. In contrast, carbon dioxide accumulated at floor level in the form of a gas cloud. Thus, floor level exhaust ventilation systems are likely unsuitable for the collection and removal of anesthetic gases from operating rooms.


Assuntos
Isoflurano/química , Salas Cirúrgicas , Sevoflurano/química , Movimentos do Ar , Poluentes Ocupacionais do Ar/química , Anestésicos Inalatórios/química , Dióxido de Carbono/química , Cinética , Ventilação
8.
Appl Therm Eng ; 148: 208-218, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32288589

RESUMO

This study, that is practice-based learning in a real hospital construction project, has evaluated the ventilation performance of three strategies in the protection of health care workers and HVAC control for airborne infectious diseases induced by contaminated exhaled air from patients in a negative pressure isolation room. This paper examines air flow path and airborne pollutant distribution by computational fluid dynamics modeling and field measurement. In hospitals, the risk of virus diffusion mainly depends on air flow behavior and changes in direction caused by supply air and exhaust air locations. An improved isolation room ventilation strategy has been suggested, and is found to be the most efficient in removing contaminants based on the observations and simulation results from three ventilation systems. The results show that ventilation systems utilizing the "low-level extraction" technique are very effective at removing pollutants in the human breathing zone. A new clean isolation room ventilation strategy has been developed that employs two exhaust air grilles on the wall behind the bed at low floor level, coupled with a fan filter unit, and is found to have the highest pollutant removal efficiency.

9.
Ann Ig ; 31(5): 482-495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304528

RESUMO

BACKGROUND: The study investigated 35 orthopedic OTs [17 with mixed flow (M-OTs), 18 with turbulent flow (T-OTs)]. METHODS: The OTs were divided into two categories based on recurring architectural and construction solutions, collected by a survey form: type-A (recently built or renovated rooms), and type-B (other OTs). Assessment of microbial air contamination (colony forming units (cfu)/m3 obtained by active sampling via Surface Air System) was then performed. RESULTS: In 97% of the OTs, a Total Viable Count (TVC) was within the limits recommended by ISPESL 2009; all A-type OTs, and 94% of B-type passed. The TVC of type-A OTs [median 15 cfu/m3, range 3-158] was lower than that of type-B OTs [median 28 cfu/m3, range 6-206], although the difference was not significant. The number of people in type-A [mean 8.6, range 6-11] was lower than in type-B [mean 9.6, range 7-13] OTs, and when adjusted to the volume of the OT (person/m3), showed a significant correlation with TVC (ρ = 0.383, p <0.05). CONCLUSIONS: In conclusion, the structural factors examined do not appear to significantly affect the microbiological air quality at the specific sampling point. However, further investigations are required to identify the factors that have the greatest effect on TVC.


Assuntos
Microbiologia do Ar/normas , Monitoramento Ambiental/métodos , Salas Cirúrgicas/normas , Procedimentos Ortopédicos/normas , Poluição do Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Contagem de Colônia Microbiana , Hospitais/normas , Humanos , Ortopedia/normas
10.
Build Environ ; 121: 49-66, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287971

RESUMO

Recirculating ventilation systems may act as carriers of hazardous substances. The long-term prediction of the dynamic distribution of contaminants in this type of system is crucial for the evaluation of pollution and further design of more efficient ventilation systems. However, few convenient methods can predict the dynamic distribution of contaminants, because the dynamic supply air concentrations resulting from air recirculation are unknown, especially over long time periods, such as months or years. In this study, a novel method is proposed to predict the dynamic distribution of contaminants over a long time period in a complex recirculating ventilation system, where an algebraic expression based on the indices of the response coefficient is applied to account for the relationship between the contaminant distribution inside the room and various boundary conditions. The method is established by obtaining comprehensive mathematical descriptions of the relationships between concentrations of contaminants in the air handling units, supply air inlets, return air outlets, and fresh air. Hourly supply air concentrations can be easily obtained by solving a matrix, and the dynamic distribution of contaminants is then calculated using an expression based on the response coefficient. The reliability of the proposed method is analyzed by both experimental and numerical methods. A simplified method is suggested to accelerate the time-consuming calculation of the response coefficient. The proposed method is beneficial for predicting three-dimensional dynamic distribution of contaminants in complex ventilation systems with an acceptable accuracy and time cost.

12.
Indoor Air ; 24(6): 629-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24750197

RESUMO

UNLABELLED: The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 µm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. PRACTICAL IMPLICATIONS: Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Ventilação , Filtração/instrumentação , Habitação , Humanos , Tamanho da Partícula , Material Particulado/análise , República da Coreia , Ventilação/instrumentação , Vento
13.
Environ Sci Pollut Res Int ; 31(31): 43712-43730, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38907821

RESUMO

To control the diffusion of high concentrations of coal dust during tunnel boring and minimize the threat to the life and health of coal miners, theoretical analysis, numerical simulations, and field measurements were combined in this study. First, computational fluid dynamic simulation software was used to simulate the generation of dust particles and their transport pattern in the tunnel. Subsequently, an innovative orthogonal test was performed to study the effect of four ventilation parameters [the pressure airflow rate (Q), distance between the air duct center and heading face (LA), distance between the air duct center and tunnel floor (LB), and distance between the air duct center and nearest coal wall (LC)] on dust diffusion. According to the orthogonal test results, the optimal ventilation parameters for effective dust control are as follows: Q = 1400 m3/min, LA = 7 m, LB = 2.8 m, and LC = 1 m. The optimized set of ventilation parameters was applied to the Wangpo 3206 working face. The results show that dust diffusion in the tunnel was effectively controlled and that the air quality was sufficiently improved.


Assuntos
Carvão Mineral , Poeira , Ventilação , Poluição do Ar/prevenção & controle , Hidrodinâmica , Simulação por Computador , Minas de Carvão , Humanos
14.
Environ Pollut ; 343: 123164, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103710

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic demonstrated the threat of airborne pathogenic respiratory viruses such as the airborne Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The ability to detect circulating viruses in a workplace or dormitory setting allows an early warning system that can alert occupants to implement precautions (e.g. masking) and/or trigger individual testing to allow isolation and quarantine measures to halt contagion. This work extends and validates the first successful detection of SARS-CoV-2 virus in dormitory Heating, Ventilation, and Air Conditioning (HVAC) systems and compares different air sampling methods and media types combined with optimized quantitative Reverse-Transcription PCR (qRT-PCR) analysis. The study was performed in two environments; large dormitories of students who underwent periodic testing for COVID-19 (unknown environment) and the HVAC air from a suite with a student who had tested positive for COVID-19 (known dorm). The air sampling methods were performed using Filter Cassettes, BioSampler, AerosolSense Sampler and Button Sampler (with four media types with different pore sizes of 5 µm, 3 µm, 3 µm (gelatin), and 1.2 µm). The SARS-CoV-2 positive air samples were compared with the positive samples collected by individual student campus track tracing methods using PCR testing on saliva and nasopharyngeal samples. The results show a detection rate of 73% in the unknown environment and a 78% detection rate in the known dorm. Our data show that the virus was detectable with all the sampling methods we employed. However, the AerosolSense sampler and BioSampler performed the best at 63% and 61% detection rates, compared to 25% for the Filter Cassettes and 23% for the Button Sampler. Despite the success rate, it is not possible to definitively conclude which method is most sensitive due to the limited number of samples. These results show that with careful sampling and optimized PCR methods, pathogenic respiratory viruses can be detected in large buildings using HVAC return air.


Assuntos
COVID-19 , Vírus , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Ar Condicionado , Calefação , Teste para COVID-19
15.
Sci Rep ; 14(1): 13427, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862666

RESUMO

Nitrogen is widely used in various laboratories as a suppressive gas and a protective gas. Once nitrogen leaks and accumulates in a such confined space, it will bring serious threats to the experimental staff. Especially in underground tunnels or underground laboratories where there is no natural wind, the threat is more intense. In this work, the ventilation design factors and potential leakage factors are identified by taking the leakage and diffusion of a large liquid nitrogen tank in China Jinping Underground Laboratory (CJPL) as an example. Based on computational fluid dynamics (CFD) research, the effects of fresh air inlet position, fresh air velocity, exhaust outlet position, leakage hole position, leakage hole size, and leaked nitrogen mass flow rate on nitrogen diffusion behavior in specific environments are discussed in detail from the perspectives of nitrogen concentration field and nitrogen diffusion characteristics. The influencing factors are parameterized, and the Latin hypercube sampling (LHS) is used to uniformly sample within the specified range of each factor to obtain samples that can represent the whole sample space. The nitrogen concentration is measured by numerical value, and the nitrogen diffusion characteristics are measured by category. The GA-BP-ANN numerical regression and classification regression models for nitrogen concentration prediction and nitrogen diffusion characteristics prediction are established. By using various rating indicators to evaluate the performance of the trained model, it is found that models have high accuracy and recognition rate, indicating that it is effective in predicting and determining the concentration value and diffusion characteristics of nitrogen according to ventilation factors and potential leakage factors. The research results can provide a theoretical reference for the parametric design of the ventilation system.

16.
Heliyon ; 10(16): e36055, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224320

RESUMO

Underground small indoor gymnasiums (USIG) are important public places, it is vital to design and build a very economical and efficient ventilation system for effective closed-loop regulation of temperature and gases concentration at prescribed levels. In the article, the model-based prototype design, establishment and operation were proposed and applied to closed-loop control system of the underground small indoor gymnasiums' ventilation system (USIGVS). First of all, the extended Multiphysics model was developed through feedback connecting the 3D Multiphysics model of air flow rate, temperature, O2 and CO2 concentration with a 0D proportional-integral-derivative (PID) controller via Neumann boundary condition, hence a close-loop USIGVS was constructed for feedback control of temperature and gases concentration in ping-pong USIG. Simultaneously, a cost function sufficiently representing the design requirement was formulated. Then global parameter sensitivity analysis (GPSA) was applied for sensitivity ranking of parameters including geometric parameters of USIGVS and tunable parameters of PID controller. The GPSA proved that sensitivity ordering of the cost function to each parameter was proportional gain (k p ) > derivative gain (k d ) > distance from left inlet to bottom (r) > distance from outlet pipe to bottom (d) > integrative gain (k i ) > distance from upper inlet pipe to left (h), respectively, and the k p , k d and r was the parameter influencing the cost function the most. The optimal parameters determined by both GPSA and response optimization were k p  = 3.17 m4 mol-1 s-1, k d  = 1.49 m4 mol-1, r = 2.04 m, d = 3.12 m, k i  = 0.37 m4 mol-1 s-2 and h = 3.85 m. Finally, the closed-loop USIGVS prototype with optimal parameters was designed and established through real-time simulation. The real-time operation confirmed that the temperature and gases concentrations were robust maintained at prescribed levels with desired dynamic response characteristics and lower power consumption, and the expected requirements were achieved for the design, establishment and operation of closed-loop USIGVS control system prototype.

17.
Environ Sci Pollut Res Int ; 30(29): 73812-73824, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37195609

RESUMO

Over 766 million people have been infected by coronavirus disease 2019 (COVID-19) in the past 3 years, resulting in 7 million deaths. The virus is primarily transmitted through droplets or aerosols produced by coughing, sneezing, and talking. A full-scale isolation ward in Wuhan Pulmonary Hospital is modeled in this work, and water droplet diffusion is simulated using computational fluid dynamics (CFD). In an isolation ward, a local exhaust ventilation system is intended to avoid cross-infection. The existence of a local exhaust system increases turbulent movement, leading to a complete breakup of the droplet cluster and improved droplet dispersion inside the ward. When the outlet negative pressure is 4.5 Pa, the number of moving droplets in the ward decreases by approximately 30% compared to the original ward. The local exhaust system could minimize the number of droplets evaporated in the ward; however, the formation of aerosols cannot be avoided. Furthermore, 60.83%, 62.04%, 61.03%, 60.22%, 62.97%, and 61.52% of droplets produced through coughing reached patients in six different scenarios. However, the local exhaust ventilation system has no apparent influence on the control of surface contamination. In this study, several suggestions with regards to the optimization of ventilation in wards and scientific evidence are provided to ensure the air quality of hospital isolation wards.


Assuntos
Filtros de Ar , COVID-19 , Infecção Hospitalar , Humanos , Tosse , Hospitais , Emissões de Veículos , Ventilação
18.
Atmos Pollut Res ; 14(4): 101716, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36942301

RESUMO

To control the spread and transmission of airborne particles (especially SARS-CoV-2 coronavirus, recently) in the indoor environment, many control strategies have been employed. Comparisons of these strategies enable a reasonable choice for indoor environment control and cost-effectiveness. In this study, a series of experiments were conducted in a full-scale chamber to simulate a conference room. The control effects of four different strategies (a ventilation system (320 m3/h) with and without a baffle, a specific type of portable air cleaner (400 m3/h) and a specific type of desk air cleaner (DAC, 160 m3/h)) on the transportation of particles of different sizes were studied. In addition, the effects of coupling the ventilation strategies with five forms of indoor airflow organization (side supply and side or ceiling return, ceiling supply and ceiling or side return, floor supply and ceiling return) were evaluated. The cumulative exposure level (CEL) and infection probability were selected as evaluation indexes. The experimental results showed that among the four strategies, the best particle control effect was achieved by the PAC. The reduction in CEL for particles in the overall size range was 22.1% under the ventilation system without a baffle, 34.3% under the ventilation system with a baffle, 46.4% with the PAC, and 10.1% with the DAC. The average infection probabilities under the four control strategies were 11.3-11.8%, 11.1-11.8%, 9.1-9.5%, and 18.2-19.7%, respectively. Among the five different forms of airflow organization, the floor supply and ceiling return mode exhibited the best potential ability to remove particles.

19.
Environ Sci Pollut Res Int ; 30(45): 101709-101724, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656298

RESUMO

The gas accumulation in the return corner of a high-gas fully mechanized mining face can easily cause the gas volume fraction to exceed the safety limit, threatening the safety of coal mines. In this study, the unit method was used to analyze the gas sources and emissions based on the actual case. The airflow and gas distribution characteristics of the two-inlet-one-outlet (TIOO) ventilation system and the one-inlet-two-outlet (OITO) ventilation system were studied using CFD numerical simulation. The results show that under the TIOO ventilation system, the "U"-type air leakage in the goaf leads deep gas into the return corner, which causes the gas volume fraction in the return corner to rise to 0.4-2.0%. After the mining face is optimized into the OITO ventilation system, the "J"-type air leakage of the goaf suppresses the high concentration of gas in the deep position of the goaf. Combined with the gas extraction measures, the gas volume fraction in the return corner, exhaust roadway's outlet, and retaining roadway's outlet is controlled at 0.28%, 0.34%, and 0.23%. This study will provide new ideas for solving the problem of gas accumulation in the return corner of a high-gas fully mechanized mining face.


Assuntos
Minas de Carvão , Simulação por Computador , Carvão Mineral
20.
Heliyon ; 9(4): e15207, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089318

RESUMO

Screening clinics play a major role in preventing the transmission of infectious diseases. The main problem that should be addressed is the exposure to cross-infection between healthcare workers and individuals intended to be tested. In this study, a noncontact modular screening clinic (NCMSC) was developed that addresses the problems of existing screening clinics and the risks of cross-contamination during the infectious disease sampling process. The space and ventilation system of the NCMSC were designed to effectively remove viral aerosols to avoid cross-contamination. The spatial configurations that enabled noncontact specimen sampling and pressure differential control was achieved. Regarding the measurement method with the use of tracer gas, an experimental field test framework and procedure that can evaluate the cross-contamination between rooms were presented. It is the observation of pollutants (tracer gas) in two different modes (normal breathing and AGP from a patient) in a screening clinic with ventilation, compared to the room next door, where the HCW is located. Additionally, based on onsite experiments using SF6 tracer gas that mimics the viral aerosol at an actual scale, it was verified that no cross-contamination occurred in the NCMSC; accordingly, it was possible to protect sufficiently the healthcare workers. It will be possible to use the outcomes of this study as basic data for the development of standards for the installation and operation of screening clinics for infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA