RESUMO
It is well established that humans use self-motion and landmark cues to successfully navigate their environment. Existing research has demonstrated a critical role of the vestibular system in supporting navigation across many species. However, less is known about how vestibular cues interact with landmarks to promote successful navigation in humans. In the present study, we used a motion simulator to manipulate the presence or absence of vestibular cues during a virtual navigation task. Participants learned routes to a target destination in three different landmark blocks in a virtual town: one with proximal landmarks, one with distal landmarks, and one with no landmarks present. Afterwards, they were tested on their ability to retrace the route and find the target destination. We observed a significant interaction between vestibular cues and proximal landmarks, demonstrating that the potential for vestibular cues to improve route navigation is dependent on landmarks that are present in the environment. In particular, vestibular cues significantly improved route navigation when proximal landmarks were present, but this was not significant when distal landmarks or no landmarks were present. Overall, our results indicate that landmarks play an important role in the successful incorporation of vestibular cues to human spatial navigation.
Assuntos
Sinais (Psicologia) , Navegação Espacial , Humanos , Percepção Espacial , Sistema VestibularRESUMO
Active amplification of organized synaptic inputs in dendrites can endow individual neurons with the ability to perform complex computations. However, whether dendrites in behaving animals perform independent local computations is not known. Such activity may be particularly important for complex behavior, where neurons integrate multiple streams of information. Head-restrained imaging has yielded important insights into cellular and circuit function, but this approach limits behavior and the underlying computations. We describe a method for full-featured 2-photon imaging in awake mice during free locomotion with volitional head rotation. We examine head direction and position encoding in simultaneously imaged apical tuft dendrites and their respective cell bodies in retrosplenial cortex, an area that encodes multi-modal navigational information. Activity in dendrites was not determined solely by somatic activity but reflected distinct navigational variables, fulfilling the requirements for dendritic computation. Our approach provides a foundation for studying sub-cellular processes during complex behaviors.