Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Immunity ; 57(1): 40-51.e5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38171362

RESUMO

Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.


Assuntos
Anticorpos Neutralizantes , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C/química , Hepacivirus , Proteínas do Envelope Viral/genética
2.
Proc Natl Acad Sci U S A ; 120(17): e2300376120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068258

RESUMO

The high transmissibility of SARS-CoV-2 Omicron subvariants was generally ascribed to immune escape. It remained unclear whether the emerging variants have gradually acquired replicative fitness in human respiratory epithelial cells. We sought to evaluate the replicative fitness of BA.5 and earlier variants in physiologically active respiratory organoids. BA.5 exhibited a dramatically increased replicative capacity and infectivity than B.1.1.529 and an ancestral strain wildtype (WT) in human nasal and airway organoids. BA.5 spike pseudovirus showed a significantly higher entry efficiency than that carrying WT or B.1.1.529 spike. Notably, we observed prominent syncytium formation in BA.5-infected nasal and airway organoids, albeit elusive in WT- and B.1.1.529-infected organoids. BA.5 spike-triggered syncytium formation was verified by lentiviral overexpression of spike in nasal organoids. Moreover, BA.5 replicated modestly in alveolar organoids, with a significantly lower titer than B.1.1.529 and WT. Collectively, the higher entry efficiency and fusogenic activity of BA.5 spike potentiated viral spread through syncytium formation in the human airway epithelium, leading to enhanced replicative fitness and immune evasion, whereas the attenuated replicative capacity of BA.5 in the alveolar organoids may account for its benign clinical manifestation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Nariz , Organoides , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
J Virol ; 98(6): e0029524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38712945

RESUMO

Hepatitis E virus is a single-strand, positive-sense RNA virus that can lead to chronic infection in immunocompromised patients. Virus-host recombinant variants (VHRVs) have been described in such patients. These variants integrate part of human genes into the polyproline-rich region that could introduce new post-translational modifications (PTMs), such as ubiquitination. The aim of this study was to characterize the replication capacity of different VHRVs, namely, RNF19A, ZNF787, KIF1B, EEF1A1, RNA18, RPS17, and RPL6. We used a plasmid encoding the Kernow strain, in which the fragment encoding the S17 insertion was deleted (Kernow p6 delS17) or replaced by fragments encoding the different insertions. The HEV RNA concentrations in the supernatants and the HepG2/C3A cell lysates were determined via RT-qPCR. The capsid protein ORF2 was immunostained. The effect of ribavirin was also assessed. The HEV RNA concentrations in the supernatants and the cell lysates were higher for the variants harboring the RNF19A, ZNF787, KIF1B, RPS17, and EEF1A1 insertions than for the Kernow p6 del S17, while it was not with RNA18 or RPL6 fragments. The number of ORF2 foci was higher for RNF19A, ZNF787, KIF1B, and RPS17 than for Kernow p6 del S17. VHRVs with replicative advantages were less sensitive to the antiviral effect of ribavirin. No difference in PTMs was found between VHRVs with a replicative advantage and those without. In conclusion, our study showed that insertions did not systematically confer a replicative advantage in vitro. Further studies are needed to determine the mechanisms underlying the differences in replicative capacity. IMPORTANCE: Hepatitis E virus (HEV) is a major cause of viral hepatitis. HEV can lead to chronic infection in immunocompromised patients. Ribavirin treatment is currently used to treat such chronic infections. Recently, seven virus-host recombinant viruses were characterized in immunocompromised patients. These viruses have incorporated a portion of a human gene fragment into their genome. We studied the consequences of these insertions on the replication capacity. We found that these inserted fragments could enhance virus replication for five of the seven recombinant variants. We also showed that the recombinant variants with replicative advantages were less sensitive to ribavirin in vitro. Finally, we found that the mechanisms leading to such a replicative advantage do not seem to rely on the post-translational modifications introduced by the human gene fragment that could have modified the function of the viral protein. The mechanisms involved in improving the replication of such recombinant viruses remain to be explored.


Assuntos
Vírus da Hepatite E , Interações entre Hospedeiro e Microrganismos , Recombinação Genética , Humanos , Antivirais/farmacologia , Células Hep G2 , Hepatite E/genética , Hepatite E/virologia , Vírus da Hepatite E/classificação , Vírus da Hepatite E/efeitos dos fármacos , Vírus da Hepatite E/genética , Vírus da Hepatite E/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Ribavirina/farmacologia , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Interações entre Hospedeiro e Microrganismos/genética , Ubiquitinação/genética , Plasmídeos/genética
4.
Virol J ; 21(1): 55, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449001

RESUMO

Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Paquistão/epidemiologia , Pandemias , Virulência/genética , Aminoácidos , Poliproteínas , Variação Genética
5.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612505

RESUMO

SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Mutagênese , Mutação , Nucleotídeos
6.
J Infect Dis ; 228(10): 1352-1356, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37497681

RESUMO

The presence of human immunodeficiency virus (HIV) 1 subtype A6, characterized by the L74I integrase (IN) polymorphism, is associated with confirmed virologic failure in clinical trials of long-acting cabotegravir and rilpivirine. We investigated the effect of L74I on replication capacity (RC) of recombinant viruses carrying this polymorphism in combination with various IN stand-transfer inhibitor resistance mutations. The presence of L74I conferred greater RC to recombinant viruses expressing HIV-1 A6 IN when present together with G118R, G140R, Q148H, and R263K; no significant difference in RC was observed for the Q148K or R mutants. These findings may explain, in part, the association of HIV-1 subtype A6 with virologic failure.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Humanos , HIV-1/genética , Substituição de Aminoácidos , Replicação Viral/genética , Oxazinas/uso terapêutico , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Mutação , Piridonas/farmacologia , Piridonas/uso terapêutico , Infecções por HIV/tratamento farmacológico , Farmacorresistência Viral/genética , Integrase de HIV/genética
7.
Antimicrob Agents Chemother ; 67(7): e0039423, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37367486

RESUMO

The concept of a mild mutagen was coined to describe a minor mutagenic activity exhibited by some nucleoside analogues that potentiated their efficacy as antiretroviral agents. In the present study, we report the mild mutagen activity of sofosbuvir (SOF) for hepatitis C virus (HCV). Serial passages of HCV in human hepatoma cells, in the presence of SOF at a concentration well below its cytotoxic concentration 50 (CC50) led to pre-extinction populations whose mutant spectra exhibited a significant increase of C→U transitions, relative to populations passaged in the absence of SOF. This was reflected in an increase in several diversity indices that were used to characterize viral quasispecies. The mild mutagenic activity of SOF was largely absent when it was tested with isogenic HCV populations that displayed high replicative fitness. Thus, SOF can act as a mild mutagen for HCV, depending on HCV fitness. Possible mechanisms by which the SOF mutagenic activity may contribute to its antiviral efficacy are discussed.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Hepacivirus/genética , Mutagênicos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Genótipo , Ribavirina/uso terapêutico , Resultado do Tratamento , Quimioterapia Combinada
8.
J Virol ; 96(2): e0119821, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757840

RESUMO

Since 2001, strains of porcine parvovirus (PPV), designated 27a-like strains, were observed in Europe, suggesting a predominance of these viruses over older strains. The reasons for the obvious evolutionary advantage are unknown. Here, a series of mutants containing amino acid replacements found in the predominant field strains were generated in a PPV-NADL2 background, and their impact on replication efficiency and antibody binding activity was determined. Some amino acid substitutions observed in the 27a-like strains significantly increased viral fitness and decreased neutralization activity of serum samples raised against commercial vaccines and old virus strains (e.g., NADL2). These mutant viruses and a monoclonal antibody raised against a classical PPV strain defined a 27a-specific neutralizing epitope around amino acid 228 of the capsid protein VP2. Based on the analysis of the mutant viruses, it is hypothesized that the predominant factor for the global spread of the PPV-27a strain substitutions is an increased viral fitness of the 27a-like viruses, possibly supported by partial immune selection. This is reminiscent to the evolution of canine parvovirus and worldwide replacement of the original virus by the so-called new antigenic types. IMPORTANCE Porcine parvovirus is one of the most important causes of reproductive failure in swine. Recently, despite the continuous use of vaccines, "new" strains emerged, leading to the hypothesis that the emergence of new amino acid substitutions could be a viral adaptation to the immune response against the commercial vaccines. Our results indicate the amino acid substitutions observed in the 27a-like strains can modify viral fitness and antigenicity. However, an absolute immune escape was not evident.


Assuntos
Proteínas do Capsídeo/genética , Parvovirus Suíno/fisiologia , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Células Cultivadas , Epitopos/genética , Epitopos/imunologia , Modelos Moleculares , Testes de Neutralização , Parvovirus Suíno/genética , Parvovirus Suíno/imunologia , Suínos , Replicação Viral
9.
J Biol Chem ; 297(3): 101031, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339738

RESUMO

The Q80K polymorphism in the NS3-4A protease of the hepatitis C virus is associated with treatment failure of direct-acting antiviral agents. This polymorphism is highly prevalent in genotype 1a infections and stably transmitted between hosts. Here, we investigated the underlying molecular mechanisms of evolutionarily conserved coevolving amino acids in NS3-Q80K and revealed potential implications of epistatic interactions in immune escape and variants persistence. Using purified protein, we characterized the impact of epistatic amino acid substitutions on the physicochemical properties and peptide cleavage kinetics of the NS3-Q80K protease. We found that Q80K destabilized the protease protein fold (p < 0.0001). Although NS3-Q80K showed reduced peptide substrate turnover (p < 0.0002), replicative fitness in an H77S.3 cell culture model of infection was not significantly inferior to the WT virus. Epistatic substitutions at residues 91 and 174 in NS3-Q80K stabilized the protein fold (p < 0.0001) and leveraged the WT protease stability. However, changes in protease stability inversely correlated with enzymatic activity. In infectious cell culture, these secondary substitutions were not associated with a gain of replicative fitness in NS3-Q80K variants. Using molecular dynamics, we observed that the total number of residue contacts in NS3-Q80K mutants correlated with protein folding stability. Changes in the number of contacts reflected the compensatory effect on protein folding instability by epistatic substitutions. In summary, epistatic substitutions in NS3-Q80K contribute to viral fitness by mechanisms not directly related to RNA replication. By compensating for protein-folding instability, epistatic interactions likely protect NS3-Q80K variants from immune cell recognition.


Assuntos
Epistasia Genética , Hepacivirus/genética , Hepatite C/virologia , Substituição de Aminoácidos , Genes Virais , Humanos , Simulação de Dinâmica Molecular , Mutação , Polimorfismo Genético , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
10.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34845981

RESUMO

Dengue virus (DENV), like other viruses, closely interacts with the host cell machinery to complete its life cycle. Over the course of infection, DENV interacts with several host factors with pro-viral activities to support its infection. Meanwhile, it has to evade or counteract host factors with anti-viral activities which inhibit its infection. These molecular virus-host interactions play a crucial role in determining the success of DENV infection. Deciphering such interactions is thus paramount to understanding viral fitness in its natural hosts. While DENV-mammalian host interactions have been extensively studied, not much has been done to characterize DENV-mosquito host interactions despite its importance in controlling DENV transmission. Here, to provide a snapshot of our current understanding of DENV-mosquito interactions, we review the literature that identified host factors and cellular processes related to DENV infection in its mosquito vectors, Aedes aegypti and Aedes albopictus, with a particular focus on DENV-mosquito omics studies. This knowledge provides fundamental insights into the DENV life cycle, and could contribute to the development of novel antiviral strategies.


Assuntos
Vírus da Dengue/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Linhagem Celular , Dengue/transmissão , Dengue/virologia , Humanos , Estágios do Ciclo de Vida , Transcriptoma , Replicação Viral
11.
J Gen Virol ; 101(4): 410-419, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068528

RESUMO

The fidelity of flaviviruses is thought to be tightly regulated for optimal fitness within and between hosts. West Nile virus (WNV) high-fidelity (HiFi) mutations V793I and G806R within the RNA-dependent RNA polymerase, and low-fidelity (LoFi) mutation T248I within the methyltransferase, were previously shown to attenuate infectivity and replicative fitness in Culex mosquitoes and Culex tarsalis (CXT) cells but not in mammalian cells. We hypothesized that fidelity alterations would modify adaptation and maintenance in a host-specific manner. To test this hypothesis, wild-type (WT), HiFi (V793I/G806R) and LoFi (T248I) variants were sequentially passaged eight times in avian (PDE) or mosquito cells, or alternately between the two. Initial characterization confirmed that fidelity mutants are attenuated in mosquito, but not avian, cells. Deep sequencing revealed mutations unique to both cell lines and fidelity mutants, including ENV G1378A, a mutation associated with avian cell adaptation. To characterize maintenance and adaptation, viral outputs were monitored throughout passaging and viral fitness was assessed. The results indicate that fidelity mutants can at times recover fitness during mosquito cell passage, but remain attenuated relative to WT. Despite similar initial fitness, LoFi mutants were impaired during sequential passage in avian cells. Conversely, HiFi mutants passaged in avian cells showed increased adaptation, suggesting that increased fidelity may be advantageous in avian hosts. Although some adaptation occurred with individual mutants, the output titres of fidelity mutants were on average lower and were often lost during host switching. These data confirm that arbovirus fidelity is likely fine-tuned to maximize survival in disparate hosts.


Assuntos
Adaptação Fisiológica/genética , RNA Polimerase Dependente de RNA/genética , Proteínas do Envelope Viral/química , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/metabolismo , Animais , Aves/virologia , Linhagem Celular , Biologia Computacional , Culicidae/virologia , Patos/virologia , Interações entre Hospedeiro e Microrganismos , Mutação , Quase-Espécies/genética , RNA Polimerase Dependente de RNA/metabolismo , Inoculações Seriadas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Vírus do Nilo Ocidental/crescimento & desenvolvimento
12.
J Clin Microbiol ; 58(12)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32999010

RESUMO

Despite the high virological response rates achieved with current directly acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of treated patients do not achieve a sustained viral response. The identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultradeep sequencing (UDS) methods, for HCV characterization and patient management. Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide resistance-associated substitutions (RAS), from 220 patients who failed therapy. They were present frequently in basal and posttreatment virus of patients who failed different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. They also have limited predicted disruptive effects on the three-dimensional structures of the proteins harboring them. Possible mechanisms of HRS origin and dominance, as well as their potential predictive value for treatment response, are discussed.


Assuntos
Hepatite C Crônica , Hepatite C , Substituição de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Genótipo , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Humanos , Falha de Tratamento , Proteínas não Estruturais Virais/genética
13.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602610

RESUMO

Neuraminidase (NA) inhibitors (NAIs) are widely used antiviral drugs for the treatment of humans with influenza virus infections. There have been widespread reports of NAI resistance among seasonal A(H1N1) viruses, and most have been identified in oseltamivir-exposed patients or those treated with other NAIs. Thus, monitoring and identifying NA markers conferring resistance to NAIs-particularly newly introduced treatments-are critical to the management of viral infections. Therefore, we screened and identified substitutions conferring resistance to laninamivir by enriching random mutations in the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus followed by deep sequencing of the laninamivir-selected variants. After the generation of single mutants possessing each identified mutation, two A(H1N1)pdm09 recombinants possessing novel NA gene substitutions (i.e., D199E and P458T) were shown to exhibit resistance to more than one NAI. Of note, mutants possessing P458T-which is located outside of the catalytic or framework residue of the NA active site-exhibited highly reduced inhibition by all four approved NAIs. Using MDCK cells, we observed that the in vitro viral replication of the two recombinants was lower than that of the wild type (WT). Additionally, in infected mice, decreased mortality and/or mean lung viral titers were observed in mutants compared with the WT. Reverse mutations to the WT were observed in lung homogenate samples from D199E-infected mice after 3 serial passages. Overall, the novel NA substitutions identified could possibly emerge in influenza A(H1N1)pdm09 viruses during laninamivir therapy and the viruses could have altered NAI susceptibility, but the compromised in vitro/in vivo viral fitness may limit viral spreading.IMPORTANCE With the widespread emergence of NAI-resistant influenza virus strains, continuous monitoring of mutations that confer antiviral resistance is needed. Laninamivir is the most recently approved NAI in several countries; few data exist related to the in vitro selection of viral mutations conferring resistance to laninamivir. Thus, we screened and identified substitutions conferring resistance to laninamivir by random mutagenesis of the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus strain followed by deep sequencing of the laninamivir-selected variants. We found several novel substitutions in NA (D199E and P458T) in an A(H1N1)pdm09 background which conferred resistance to NAIs and which had an impact on viral fitness. Our study highlights the importance of continued surveillance for potential antiviral-resistant variants and the development of alternative therapeutics.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Neuraminidase/genética , Proteínas Virais/genética , Zanamivir/análogos & derivados , Animais , Antivirais/farmacologia , Linhagem Celular , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Guanidinas , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Piranos , Ácidos Siálicos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Zanamivir/farmacologia
14.
Bull Math Biol ; 82(5): 54, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350621

RESUMO

Despite being similar in structure, functioning, and size, viral pathogens enjoy very different, usually well-defined ways of life. They occupy their hosts for a few days (influenza), for a few weeks (measles), or even lifelong (HCV), which manifests in acute or chronic infections. The various transmission routes (airborne, via direct physical contact, etc.), degrees of infectiousness (referring to the viral load required for transmission), antigenic variation/immune escape and virulence define further aspects of pathogenic lifestyles. To survive, pathogens must infect new hosts; the success determines their fitness. Infection happens with a certain likelihood during contact of hosts, where contact can also be mediated by vectors. Besides structural aspects of the host-contact network, three parameters appear to be key: the contact rate and the infectiousness during contact, which encode the mode of transmission, and third the immunity of susceptible hosts. On these grounds, what can be said about the reproductive success of viral pathogens? This is the biological question addressed in this paper. The answer extends earlier results of the author and makes explicit connection to another basic work on the evolution of pathogens. A mathematical framework is presented that models intra- and inter-host dynamics in a minimalistic but unified fashion covering a broad spectrum of viral pathogens, including those that cause flu-like infections, childhood diseases, and sexually transmitted infections. These pathogens turn out as local maxima of numerically simulated fitness landscapes. The models involve differential and integral equations, agent-based simulation, networks, and probability.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Modelos Biológicos , Viroses/transmissão , Vírus/patogenicidade , Simulação por Computador , Suscetibilidade a Doenças , Humanos , Conceitos Matemáticos , Carga Viral , Virulência , Viroses/imunologia , Viroses/virologia , Fenômenos Fisiológicos Virais , Replicação Viral , Vírus/imunologia
15.
Retrovirology ; 16(1): 28, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640718

RESUMO

BACKGROUND: PIE12-trimer is a highly potent D-peptide HIV-1 entry inhibitor that broadly targets group M isolates. It specifically binds the three identical conserved hydrophobic pockets at the base of the gp41 N-trimer with sub-femtomolar affinity. This extremely high affinity for the transiently exposed gp41 trimer provides a reserve of binding energy (resistance capacitor) to prevent the viral resistance pathway of stepwise accumulation of modest affinity-disrupting mutations. Such modest mutations would not affect PIE12-trimer potency and therefore not confer a selective advantage. Viral passaging in the presence of escalating PIE12-trimer concentrations ultimately selected for PIE12-trimer resistant populations, but required an extremely extended timeframe (> 1 year) in comparison to other entry inhibitors. Eventually, HIV developed resistance to PIE12-trimer by mutating Q577 in the gp41 pocket. RESULTS: Using deep sequence analysis, we identified three mutations at Q577 (R, N and K) in our two PIE12-trimer resistant pools. Each point mutant is capable of conferring the majority of PIE12-trimer resistance seen in the polyclonal pools. Surface plasmon resonance studies demonstrated substantial affinity loss between PIE12-trimer and the Q577R-mutated gp41 pocket. A high-resolution X-ray crystal structure of PIE12 bound to the Q577R pocket revealed the loss of two hydrogen bonds, the repositioning of neighboring residues, and a small decrease in buried surface area. The Q577 mutations in an NL4-3 backbone decreased viral growth rates. Fitness was ultimately rescued in resistant viral pools by a suite of compensatory mutations in gp120 and gp41, of which we identified seven candidates from our sequencing data. CONCLUSIONS: These data show that PIE12-trimer exhibits a high barrier to resistance, as extended passaging was required to develop resistant virus with normal growth rates. The primary resistance mutation, Q577R/N/K, found in the conserved gp41 pocket, substantially decreases inhibitor affinity but also damages viral fitness, and candidate compensatory mutations in gp160 have been identified.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Infecções por HIV/virologia , HIV-1/genética , Humanos , Mutação
16.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950410

RESUMO

Under the immune pressure of cytotoxic T cells (CTLs), hepatitis B virus (HBV) evolves to accumulate mutations more likely within epitopes to evade immune detection. However, little is known about the specific patterns of the immune pressure-associated HBV mutation of T-cell epitopes and their link to disease progression. Here, we observed a correlation of the accumulated variants on HBV core protein (HBc) with the disease severity of HBV infection. Further analysis indicated that these substitutions were mostly located within CD8+ T-cell epitopes of HBc protein, which were systematically screened and identified in an unbiased manner in our study. From individual peptide level to the human leukocyte antigen I (HLA-I)-restricted population level, we elucidated that the mutations in these well-defined HLA-I-restricted T-cell epitopes significantly decreased antiviral activity-specific CTLs and were positively associated with clinical parameters and disease progression in HBV-infected patients. The molecular pattern for viral epitope variations based on the sequencing of 105 HBV virus genomes indicated that the C-terminal portion (Pc), especially the Pc-1 and Pc-2 positions, have the highest mutation rates. Further structural analysis of HLA-A*02 complexed to diverse CD8+ T-cell epitopes revealed that the highly variable C-terminal bulged peak of M-shaped HBc-derived epitopes are solvent exposed, and most of the CDR3ßs of the T-cell receptor hover over them. These data shed light on the molecular and immunological mechanisms of T-cell immunity-associated viral evolution in hepatitis B progression, which is beneficial for designing immunotherapies and vaccines.IMPORTANCE The specific patterns of sequence polymorphisms of T-cell epitopes and the immune mechanisms of the HBV epitope mutation-linked disease progression are largely unclear. In this study, we systematically evaluated the contribution of CD8+ T cells to the disease progress-associated evolution of HBV. By evaluation of patient T-cell responses based on the peptide repertoire, we comprehensively characterized the association of clinical parameters in chronic hepatitis B with the antiviral T-cell response-associated mutations of the viruses from the single-epitope level to the overall HLA-I-restricted peptide levels. Furthermore, we investigated the molecular basis of the HLA-A2-restricted peptide immune escape and found that the solvent-exposed C-terminal portion of the epitopes is highly variable under CDR3ß recognition. Our work may provide a comprehensive evaluation of viral mutations impacted by the host CTL response in HBV disease progression in the context of the full repertoire of HBc-derived epitopes.


Assuntos
Epitopos de Linfócito T/imunologia , Evolução Molecular , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/patologia , Linfócitos T/imunologia , Epitopos de Linfócito T/genética , Antígenos do Núcleo do Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Humanos , Mutação , Seleção Genética , Análise de Sequência de DNA
17.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343575

RESUMO

Primate lentiviruses, including the human and simian immunodeficiency viruses (HIV and SIV), produce infections marked by persistent, ongoing viral replication. This occurs despite the presence of virus-specific adaptive immune responses, including antibodies targeting the viral envelope glycoprotein (Env), and evolution of antibody-escape variants is a well-documented feature of lentiviral infection. Here, we examined the evolutionary dynamics of the SIV env gene during early infection (≤29 weeks postinfection) in a cohort of four SIVmac251-infected rhesus macaques. We tracked env evolution during acute and early infection using frequent sampling and ultradeep sequencing of viral populations, capturing a transmission bottleneck and the subsequent reestablishment of Env diversity. A majority of changes in the gp120 subunit mapped to two short clusters, one in the first variable region (V1) and one in V4, while most changes in the gp41 subunit appeared in the cytoplasmic domain. Variation in V1 was dominated by short duplications and deletions of repetitive sequence, while variation in V4 was marked by short in-frame deletions and closely overlapping substitutions. The most common substitutions in both patches did not alter viral replicative fitness when tested using a highly sensitive, deep-sequencing-based competition assay. Our results, together with the observation that very similar or identical patterns of sequence evolution also occur in different macaque species infected with related but divergent strains of SIV, suggest that resistance to early, strain-specific anti-Env antibodies is the result of temporally and mutationally predictable pathways of escape that occur during the early stages of infection.IMPORTANCE The envelope glycoprotein (Env) of primate lentiviruses mediates entry by binding to host cell receptors followed by fusion of the viral membrane with the cell membrane. The exposure of Env complexes on the surface of the virion results in targeting by antibodies, leading to selection for virus escape mutations. We used the SIV/rhesus macaque model to track in vivo evolution of variation in Env during acute/early infection in animals with and without antibody responses to Env, uncovering remarkable variation in animals with antibody responses within weeks of infection. Using a deep-sequencing-based fitness assay, we found substitutions associated with antibody escape had little to no effect on inherent replicative capacity. The ability to readily propagate advantageous changes that incur little to no replicative fitness costs may be a mechanism to maintain continuous replication under constant immune selection, allowing the virus to persist for months to years in the infected host.


Assuntos
Anticorpos Antivirais , Produtos do Gene env/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Macaca mulatta
18.
Artigo em Inglês | MEDLINE | ID: mdl-30201817

RESUMO

Treatment options for influenza B virus infections are limited to neuraminidase inhibitors (NAIs), which block the neuraminidase (NA) glycoprotein on the virion surface. The development of NAI resistance would therefore result in a loss of antiviral treatment options for influenza B virus infections. This study characterized two contemporary influenza B viruses with known resistance-conferring NA amino acid substitutions, D197N and H273Y, detected during routine surveillance. The D197N and H273Y variants were characterized in vitro by assessing NA enzyme activity and affinity, as well as replication in cell culture compared to those of NAI-sensitive wild-type viruses. In vivo studies were also performed in ferrets to assess the replication and transmissibility of each variant. Mathematical models were used to analyze within-host and between-host fitness of variants relative to wild-type viruses. The data revealed that the H273Y variant had NA enzyme function similar to that of its wild type but had slightly reduced replication and transmission efficiency in vivo The D197N variant had impaired NA enzyme function, but there was no evidence of reduction in replication or transmission efficiency in ferrets. Our data suggest that the influenza B virus variant with the H273Y NA substitution had a more notable reduction in fitness compared to wild-type viruses than the influenza B variant with the D197N NA substitution. Although a D197N variant is yet to become widespread, it is the most commonly detected NAI-resistant influenza B virus in surveillance studies. Our results highlight the need to carefully monitor circulating viruses for the spread of influenza B viruses with the D197N NA substitution.


Assuntos
Inibidores Enzimáticos/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Neuraminidase/antagonistas & inibidores , Substituição de Aminoácidos/efeitos dos fármacos , Substituição de Aminoácidos/genética , Animais , Antivirais/farmacologia , Linhagem Celular , Cães , Farmacorresistência Viral/genética , Feminino , Furões , Células HEK293 , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Masculino , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
19.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931674

RESUMO

The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation.IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported. Here, the principal compatibility of the two subtypes is shown by forcing the reassortment between copassaged H5N1 und H9N2 viruses in embryonated chicken eggs. The resulting reassortant viruses displayed a wide range of pathogenicity including attenuated phenotypes in chickens, but did not show enhanced zoonotic propensities in the ferret model.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados , Animais , Galinhas , Egito/epidemiologia , Furões , Aptidão Genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Fenótipo , Filogenia , Zoonoses
20.
J Viral Hepat ; 25(11): 1251-1259, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29768695

RESUMO

Daclatasvir plus asunaprevir (DCV+ASV) treatment is an all-oral direct-acting antiviral (DAA) therapy for the genotype 1b HCV-infected patients. In this study, we investigated how resistance-associated substitutions (RASs) evolved after treatment failures and assessed the effect of those substitutions on viral fitness. Sequencing of NS5A and NS3 revealed typical RASs after treatment failures. Interestingly, the RASs of NS3 reverted to the wild-type amino acid within 1 year after treatment failures. However, the RASs of NS5A were stable and did not change. The effect of NS5A and NS3 RASs on viral RNA replication was assessed after mutagenic substitution in the genotype 1b HCV RNA. Among single substitutions, the effect of D168V was more substantial than the others and the effect of the triple mutant combination (D168V+L31V+Y93H) was the most severe. The RAS at NS5A Y93 affected both viral RNA replication and virus production. Finally, the effect of trans-complementation of NS5A was demonstrated in our co-transfection experiments and these results suggest that such a trans-complementation effect of NS5A may help maintain the NS5A RASs for a long time even after cessation of the DAA treatment. In conclusion, the results from this investigation would help understand the emergence and persistence of RASs.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Idoso , Carbamatos , Linhagem Celular Tumoral , Quimioterapia Combinada , Feminino , Genótipo , Hepacivirus/efeitos dos fármacos , Humanos , Imidazóis/uso terapêutico , Isoquinolinas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mutação , Pirrolidinas , RNA Viral/biossíntese , RNA Viral/genética , Sulfonamidas/uso terapêutico , Falha de Tratamento , Valina/análogos & derivados , Proteínas não Estruturais Virais/genética , Montagem de Vírus/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA