Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482082

RESUMO

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Assuntos
Ciclo Celular , Reagentes de Ligações Cruzadas/química , DNA Viral/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Plasmídeos/metabolismo , Origem de Replicação , Replicação Viral/fisiologia , Sequência de Aminoácidos , Linfócitos B/metabolismo , Linhagem Celular , Adutos de DNA/metabolismo , Replicação do DNA , Endonucleases/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Mutação/genética , Ligação Proteica , Recombinação Genética/genética , Tirosina/metabolismo
2.
Trends Genet ; 40(9): 772-783, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38821843

RESUMO

To withstand a hostile cellular environment and replicate, viruses must sense, interpret, and respond to many internal and external cues. Retroviruses and DNA viruses can intercept these cues impinging on host transcription factors via cis-regulatory elements (CREs) in viral genomes, allowing them to sense and coordinate context-specific responses to varied signals. Here, we explore the characteristics of viral CREs, the classes of signals and host transcription factors that regulate them, and how this informs outcomes of viral replication, immune evasion, and latency. We propose that viral CREs constitute central hubs for signal integration from multiple pathways and that sequence variation between viral isolates can rapidly rewire sensing mechanisms, contributing to the variability observed in patient outcomes.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Humanos , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Replicação Viral/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Latência Viral/genética , Regulação Viral da Expressão Gênica/genética
3.
Mol Cell ; 74(3): 466-480.e4, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30930055

RESUMO

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.


Assuntos
DNA Topoisomerases Tipo II/genética , Herpesvirus Humano 1/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/genética , Latência Viral/genética , Animais , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Herpesvirus Humano 1/patogenicidade , Humanos , Proteína Homóloga a MRE11/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Neurônios/metabolismo , Neurônios/virologia , Fosforilação , Ratos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
4.
Rev Med Virol ; 34(6): e2589, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39384363

RESUMO

The persistent challenge posed by viruses that infect the central nervous system lies in their sophisticated ability to evade the host immune system. This review explores into the complex mechanisms of immune evasion employed by these neurotropic viruses, focussing on their modulation of host immune responses, evasion of adaptive immunity, and the cellular and molecular strategies that enable their persistence. Key areas explored include viral latency and reactivation, the inhibition of apoptosis, and antigenic variation, with a detailed examination of viral proteins and their interactions with host cellular processes.


Assuntos
Evasão da Resposta Imune , Humanos , Animais , Interações Hospedeiro-Patógeno/imunologia , Latência Viral/imunologia , Imunidade Adaptativa , Apoptose , Viroses do Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/imunologia , Ativação Viral/imunologia , Vírus/imunologia , Vírus/patogenicidade , Variação Antigênica
5.
J Med Virol ; 96(3): e29504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445794

RESUMO

While most NOD-like receptors (NLRs) are predominately expressed by innate immune cells, NLRC3, an inhibitory NLR of immune signaling, exhibits the highest expression in lymphocytes. The role of NLRC3 or any NLRs in B lymphocytes is completely unknown. Gammaherpesviruses, including human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV-68), establish latent infection in B lymphocytes, which requires elevated NF-κB. This study shows that during latent EBV infection of human B cells, viral-encoded latent membrane protein 1 (LMP1) decreases NLRC3 transcript. LMP1-induced-NF-κB activation suppresses the promoter activity of NLRC3 via p65 binding to the promoter. Conversely, NLRC3 inhibits NF-κB activation by promoting the degradation of LMP1 in a proteasome-dependent manner. In vivo, MHV-68 infection reduces Nlrc3 transcripts in splenocytes, and Nlrc3-deficient mice show greater viral latency than controls. These results reveal a bidirectional regulatory circuit in B lymphocytes, where viral latent protein LMP1 reduces NLRC3 expression, while NLRC3 disrupts gammaherpesvirus latency, which is an important step for tumorigenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Latência Viral , Animais , Humanos , Camundongos , Herpesvirus Humano 4/genética , NF-kappa B , Linfócitos B , Peptídeos e Proteínas de Sinalização Intercelular
6.
EMBO Rep ; 23(2): e53543, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34842321

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.


Assuntos
Antígenos de Diferenciação/metabolismo , Herpesvirus Humano 1 , Neurônios/virologia , Ativação Viral , Latência Viral , Regulação da Expressão Gênica , Herpesvirus Humano 1/fisiologia , Humanos , Hibridização in Situ Fluorescente , Transcriptoma
7.
Antimicrob Agents Chemother ; 67(4): e0160022, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975214

RESUMO

Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.


Assuntos
Infecções por HIV , Estilbenos , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Quinase C/genética , Quinase 9 Dependente de Ciclina/metabolismo , Leucócitos Mononucleares/metabolismo , Replicação Viral , Latência Viral , Estilbenos/farmacologia , Infecções por HIV/metabolismo , RNA
8.
Mol Cell Neurosci ; 123: 103770, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36055520

RESUMO

Many neurodegenerative diseases have a multifactorial etiology and variable course of progression that cannot be explained by current models. Neurotropic viruses have long been suggested to play a role in these diseases, although their exact contributions remain unclear. Human herpesvirus 6A (HHV-6A) is one of the most common viruses detected in the adult brain, and has been clinically associated with multiple sclerosis (MS), and, more recently, Alzheimer's disease (AD). HHV-6A is a ubiquitous viral pathogen capable of infecting glia and neurons. Primary infection in childhood is followed by the induction of latency, characterized by expression of the U94A viral transcript in the absence of viral replication. Here we examine the effects of U94A on cells of the central nervous system. We found that U94A expression inhibits the migration and impairs cytoplasmic maturation of human oligodendrocyte precursor cells (OPCs) without affecting their viability, a phenotype that may contribute to the failure of remyelination seen in many patients with MS. A subsequent proteomics analysis of U94A expression OPCs revealed altered expression of genes involved in tubulin associated cytoskeletal regulation. As HHV-6A seems to significantly be associated with early AD pathology, we extended our initially analysis of the impact of U94A on human derived neurons. We found that U94A expression inhibits neurite outgrowth of primary human cortical neurons and impairs synapse maturation. Based on these data we suggest that U94A expression by latent HHV-6A in glial cells and neurons renders them susceptible to dysfunction and degeneration. Therefore, latent viral infections of the brain represent a unique pathological risk factor that may contribute to disease processes.


Assuntos
Herpesvirus Humano 6 , Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Sistema Nervoso Central , Neuroglia
9.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675095

RESUMO

Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.


Assuntos
Proteinopatias TDP-43 , Viroses , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , COVID-19/genética , COVID-19/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , SARS-CoV-2/metabolismo , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo , Viroses/genética , Viroses/metabolismo
10.
Acta Obstet Gynecol Scand ; 101(6): 608-615, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35481603

RESUMO

INTRODUCTION: Understanding whether human papillomavirus (HPV) may establish latency in the uterine cervix is important. A better understanding of HPV natural history is useful for clinical counseling of women attending screening and to accurately inform health prevention strategies such as screening and HPV vaccination. We evaluated the extent of latent HPV infections in older women with a history of abnormal cytology. MATERIAL AND METHODS: We conducted a cross-sectional study in Aarhus, Denmark, from March 2013 through April 2015. Women were enrolled if they underwent cervical amputation or total hysterectomy because of benign disease. Prior to surgery, women completed a questionnaire and a cervical smear was collected for HPV testing and morphological assessment. For evaluation of latency (i.e., no evidence of active HPV infection, but HPV detected in the tissue), we selected women with a history of abnormal cervical cytology or histology, as these women were considered at increased risk of harboring a latent infection. Cervical tissue underwent extensive HPV testing using the SPF10-DEIA-LipA25 assay. RESULTS: Of 103 women enrolled, 26 were included in this analysis. Median age was 55 years (interquartile range [IQR] 52-65), and most women were postmenopausal and parous. The median number of sexual partners over the lifetime was six (IQR 3-10), and 85% reported no recent new sexual partner. Five women (19.2%) had evidence of active infection at the time of surgery, and 19 underwent latency evaluation. Of these, a latent infection was detected in 11 (57.9%), with HPV16 being the most prevalent type (50%). Nearly 80% (n = 14) of the 18 women with a history of previous low-grade or high-grade cytology with no treatment had an active or latent HPV infection, with latent infections predominating. HPV was detected in two of the six women with a history of high-grade cytology and subsequent excisional treatment, both as latent infections. CONCLUSIONS: HPV can be detected in cervical tissue specimens without any evidence of an active HPV infection, indicative of a latent, immunologically controlled infection. Modeling studies should consider including a latent state in their model when estimating the appropriate age to stop screening and when evaluating the impact of HPV vaccination.


Assuntos
Infecção Latente , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Idoso , Estudos Transversais , Dinamarca/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Papillomaviridae , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/epidemiologia , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/epidemiologia
11.
Proc Natl Acad Sci U S A ; 116(6): 2282-2289, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670656

RESUMO

HIV-1 integrates into the genome of target cells and establishes latency indefinitely. Understanding the molecular mechanism of HIV-1 latency maintenance is needed for therapeutic strategies to combat existing infection. In this study, we found an unexpected role for Apobec3A (apolipoprotein B MRNA editing enzyme catalytic subunit 3A, abbreviated "A3A") in maintaining the latency state within HIV-1-infected cells. Overexpression of A3A in latently infected cell lines led to lower reactivation, while knockdown or knockout of A3A led to increased spontaneous and inducible HIV-1 reactivation. A3A maintains HIV-1 latency by associating with proviral DNA at the 5' long terminal repeat region, recruiting KAP1 and HP1, and imposing repressive histone marks. We show that knockdown of A3A in latently infected human primary CD4 T cells enhanced HIV-1 reactivation. Collectively, we provide evidence and a mechanism by which A3A reinforces HIV-1 latency in infected CD4 T cells.


Assuntos
Citidina Desaminase/metabolismo , Epigênese Genética , Inativação Gênica , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Repetição Terminal Longa de HIV , HIV-1/fisiologia , Proteínas/metabolismo , Latência Viral , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Citidina Desaminase/química , Regulação Viral da Expressão Gênica , Humanos , NF-kappa B/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Deleção de Sequência , Fator de Transcrição Sp1/metabolismo , Ativação Viral/genética
12.
Annu Rev Med ; 69: 421-436, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29099677

RESUMO

Antiretroviral therapy (ART) has rendered HIV-1 infection a treatable illness; however, ART is not curative owing to the persistence of replication-competent, latent proviruses in long-lived resting T cells. Strategies that target these latently infected cells and allow immune recognition and clearance of this reservoir will be necessary to eradicate HIV-1 in infected individuals. This review describes current pharmacologic approaches to reactivate the latent reservoir so that infected cells can be recognized and targeted, with the ultimate goal of achieving an HIV-1 cure.


Assuntos
Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Linfócitos T/imunologia , Ativação Viral , Latência Viral , Inibidores de Acetaldeído Desidrogenases/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Dissulfiram/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Inflamação , Ativação Linfocitária , Proteína Quinase C , Receptores Toll-Like/agonistas
13.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728262

RESUMO

Herpes simplex virus (HSV) establishes latency in neurons of the peripheral and central nervous systems (CNS). Evidence is mounting that HSV latency and reactivation in the nervous system has the potential to promote neurodegenerative processes. Understanding how this occurs is an important human health goal. In the mouse model, in vivo viral reactivation in the peripheral nervous system, triggered by hyperthermic stress, has been well characterized with respect to frequency and cell type. However, characterization of in vivo reactivation in the CNS is extremely limited. Further, it remains unclear whether virus reactivated in the peripheral nervous system is transported to the CNS in an infectious form, how often this occurs, and what parameters underlie the efficiency and outcomes of this process. In this study, reactivation was quantified in the trigeminal ganglia (TG) and the brain stem from the same latently infected animal using direct assays of equivalent sensitivity. Reactivation was detected more frequently in the TG than in the brain stem and, in all but one case, the amount of virus recovered was greater in the TG than that detected in the brain stem. Viral protein positive neurons were observed in the TG, but a cellular source for reactivation in the brain stem was not identified, despite serially sectioning and examining the entire tissue (0/6 brain stems). These findings suggest that infectious virus detected in the brain stem is primarily the result of transport of reactivated virus from the TG into the brain stem.IMPORTANCE Latent herpes simplex virus (HSV) DNA has been detected in the central nervous systems (CNS) of humans postmortem, and infection with HSV has been correlated with the development of neurodegenerative diseases. However, whether HSV can directly reactivate in the CNS and/or infectious virus can be transported to the CNS following reactivation in peripheral ganglia has been unclear. In this study, infectious virus was recovered from both the trigeminal ganglia and the brain stem of latently infected mice following a reactivation stimulus, but a higher frequency of reactivation and increased titers of infectious virus were recovered from the trigeminal ganglia. Viral proteins were detected in neurons of the trigeminal ganglia, but a cellular source of infectious virus could not be identified in the brain stem. These results suggest that infectious virus is transported from the ganglia to the CNS following reactivation but do not exclude the potential for direct reactivation in the CNS.


Assuntos
Tronco Encefálico/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Gânglio Trigeminal/metabolismo , Proteínas Virais/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Transporte Biológico Ativo , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Feminino , Herpes Simples/patologia , Masculino , Camundongos , Coelhos , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia
14.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629894

RESUMO

We demonstrate for the first time in-cell dynamic nuclear polarization (DNP) in conjunction with flow cytometry sorting to address the cellular heterogeneity of in-cell samples. Utilizing a green fluorescent protein (GFP) reporter of HIV reactivation, we correlate increased 15N resonance intensity with cytokine-driven HIV reactivation in a human cell line model of HIV latency. As few as 10% GFP+ cells could be detected by DNP nuclear magnetic resonance (NMR). The inclusion of flow cytometric sorting of GFP+ cells prior to analysis by DNP-NMR further boosted signal detection through increased cellular homogeneity with respect to GFP expression. As few as 3.6 million 15N-labeled GFP+ cells could be readily detected with DNP-NMR. Importantly, cell sorting allowed for the comparison of cytokine-treated GFP+ and GFP- cells in a batch-consistent way. This provides an avenue for normalizing NMR spectral contributions from background cellular processes following treatment with cellular modulators. We also demonstrate the remarkable stability of AMUPol (a nitroxide biradical) in Jurkat T cells and achieved in-cell enhancements of 46 with 10 mM AMUPol, providing an excellent model system for further in-cell DNP-NMR studies. This represents an important contribution to improving in-cell methods for the study of endogenously expressed proteins by DNP-NMR.


Assuntos
Citometria de Fluxo/métodos , Infecções por HIV/diagnóstico por imagem , Ressonância Magnética Nuclear Biomolecular/métodos , Humanos , Células Jurkat , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Óxidos de Nitrogênio/farmacologia , Ativação Viral/fisiologia
15.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701406

RESUMO

Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.


Assuntos
Replicação do DNA/genética , DNA Viral/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Complexo de Reconhecimento de Origem/genética , Origem de Replicação/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Células HEK293 , Células HeLa , Herpesvirus Humano 4/crescimento & desenvolvimento , Histonas/metabolismo , Humanos , Complexos Multiproteicos/metabolismo , Plasmídeos/genética , Estrutura Terciária de Proteína , Replicação Viral/genética
16.
Mol Ther ; 25(5): 1168-1186, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28366764

RESUMO

CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.


Assuntos
Endonucleases/genética , Terapia Genética/métodos , Genoma Viral , Infecções por HIV/terapia , HIV-1/genética , Provírus/genética , RNA Guia de Cinetoplastídeos/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Endonucleases/metabolismo , Edição de Genes/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , Repetição Terminal Longa de HIV , HIV-1/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Provírus/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/enzimologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/metabolismo
17.
J Clin Pharm Ther ; 43(5): 740-745, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29959785

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Combined antiretroviral therapy (ART) reduces human immunodeficiency virus type 1 (HIV-1) RNA plasma levels below the limit of detection. However, HIV-1 persists in latently infected CD4+ T cells, which is currently the barrier to curing HIV-1. Novel mechanisms are being explored to target HIV-1 latent reservoirs. The purpose of this review was to critically evaluate the available literature on innovative use of valproic acid (VPA) for the agent's therapeutic effects on reversing latent human immunodeficiency virus (HIV) reservoirs. METHODS: A search of PubMed (1996-December 2017) and International Pharmaceutical Abstracts (1970-December 2017) was conducted using the MeSH terms HIV, valproic acid and latency. Free text searches included the terms latency-reversing agents, HIV therapy and valproic acid. RESULTS: Six clinical trials and one case report were critically evaluated on VPA's therapeutic effects on reversing HIV reservoirs. Only one study reported that VPA therapy has a significant effect on reversing HIV-1 latent reservoirs; all other studies reviewed and did not demonstrate an appreciable effect of VPA on reversing HIV latent reservoirs. WHAT IS NEW AND CONCLUSION: Current literature does not support the use of VPA as adjunctive therapy to reverse HIV-1 latent reservoirs. Sample sizes were small, and overall studies were not sufficiently powered. Further studies are needed to make informed conclusions on the use of VPA as an HIV-1 latency-reversing agent.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Ácido Valproico/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , HIV-1/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade
18.
Proc Natl Acad Sci U S A ; 112(21): 6694-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947153

RESUMO

Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Šresolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Šresolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains ("LANA speckles"), a hallmark of KSHV latency.


Assuntos
Antígenos Virais/química , Herpesvirus Humano 8/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA Viral/genética , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
19.
Retrovirology ; 13(1): 88, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27998278

RESUMO

BACKGROUND: Despite the durable viral suppression afforded by antiretroviral therapy, HIV-1 eradication will require strategies to target latently infected cells that persist in infected individuals. Protein kinase C (PKC) activation is a promising strategy to reactivate latent proviruses and allow for subsequent recognition and clearance of infected cells by the immune system. Ingenol derivatives are PKC agonists that induce latency reversal but also lead to T cell activation and the release of pro-inflammatory cytokines, which would be undesirable in vivo. In this work, we sought to identify compounds that would suppress pro-inflammatory cytokine production in the context of PKC activation. DESIGN AND METHODS: We performed an in vitro screen to identify compounds that could dampen pro-inflammatory cytokine release associated with T cell activation, using IL-6 as a model cytokine. We then tested the ability of the most promising screening hit, the FDA-approved Janus Kinase (JAK) inhibitor ruxolitinib, to diminish release of multiple cytokines and its effect on latency reversal using cells from HIV-1-positive, aviremic participants. RESULTS: We demonstrate that co-administration of ruxolitinib with ingenol-3,20-dibenzoate significantly reduces pro-inflammatory cytokine release without impairing latency reversal ex vivo. CONCLUSION: The combination of ingenol compounds and JAK inhibition represents a novel strategy for HIV-1 eradication.


Assuntos
Linfócitos T CD4-Positivos/virologia , Citocinas/metabolismo , Diterpenos/farmacologia , HIV-1/fisiologia , Janus Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Latência Viral , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Interleucina-6/análise , Ativação Linfocitária , Nitrilas , Proteína Quinase C/metabolismo , Pirimidinas , Ativação Viral
20.
Biochem Biophys Res Commun ; 475(2): 161-8, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27181351

RESUMO

HIV-1 latency is mainly characterized by a reversible silencing of long-terminal repeat (LTR)-driven transcription of provirus. The existing of repressive factors has been described to contribute to transcription silencing of HIV-1. Toll-interacting protein (Tollip) has been identified as a repressor of Toll like receptors (TLR)-mediated signaling. Our previous study has found that Tollip inhibited NF-κB-dependent HIV-1 promoter LTR-driven transcription, indicating the potential role of Tollip in governing viral latency. In this study, by using HIV-1 latently infected Jurkat T-cell and central memory CD4(+) T-cells, we demonstrate the role of Tollip in regulating HIV-1 latency, as the knock-down of Tollip promoted HIV-1 reactivation from both HIV-1 latently infected Jurkat CD4(+) T cells and primary central memory T cells (TCM). Moreover, we found that the activities of LTRs derived from multiple HIV-1 subtypes could be repressed by Tollip; Knock-down of Tollip promoted HIV-1 transcription and infection in CD4(+) T cells. Our data indicate a key role of Tollip in suppressing HIV-1 infection and regulating viral latency, which provides a potential host target for combating HIV-1 infection and latency.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Latência Viral , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Células Cultivadas , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , Repetição Terminal Longa de HIV , HIV-1/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA