Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(1): 514-526, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223031

RESUMO

Background: Virtual monoenergetic images (VMIs) at a low energy level can improve image quality when the amount of iodinated contrast media (CM) is reduced. The purpose was to evaluate the feasibility of using an extremely low CM volume and injection rate in cerebral computed tomography angiography (CTA) on a dual-layer spectral detector computed tomography (CT). Methods: Patients who were clinically suspected of intracranial aneurysm or cerebrovascular diseases were included in our study (from June to November 2022). In this prospective study, 80 patients were randomly enrolled into group A (8 mL of CM with a 1-mL/s flow rate) or group B (40 mL of CM with 4-mL/s flow rate). The VMIs at 40-70 keV in group A and polychromatic conventional images in the 2 groups were reconstructed. CT attenuation, image noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were evaluated via the t-test or Mann-Whitney test (2 groups), while analysis of variance or Kruskal-Wallis test (multiple groups). Subjective image quality was assessed on a 5-point scale. Results: In group A, the subjective image quality score, CT attenuation, and CNR of the internal carotid artery (ICA) and middle cerebral artery (MCA) were the highest on VMIs at 40 keV. The image noise on VMIs at 40 keV was 5.08±0.84 Hounsfield units. The subjective image quality score, CT value of the ICA, MCA, and cerebral parenchyma on VMIs at 40 keV in group A were similar to those in group B (all P values >0.05). Compared to those in group B, the VMIs at 40 keV in group A demonstrated a significantly higher mean SNR and CNR of the ICA (mean SNR: 46.22±20.18 vs. 34.32±12.40, P=0.002; CNR: 55.47±13.43 vs. 46.18±12.30, P=0.002) and MCA [SNR: 13.66 (9.78, 20.29) vs. 9.99 (7.53, 14.00), P=0.003; CNR: 47.00±12.71 vs. 39.45±10.47, P=0.005]. Conclusions: Cerebral CTA on VMIs at 40 keV with 8 mL of CM and a 1-mL/s injection rate can provide diagnostic image quality.

2.
Appl Radiat Isot ; 200: 110967, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37527620

RESUMO

This study aimed to evaluate the image quality of virtual monoenergetic images (VMIs) with tube voltage modulation in pediatric abdominal computed tomography (CT) examination and to determine the effect of decreasing contrast agent concentration. Using a 1-year old pediatric phantom, five contrast agent concentration diluent tubes of 100%, 80%, 60%, 40%, and 20% of the same concentration as the average Hounsfield unit (HU) in the descending aorta were inserted, and the mixed image and VMIs (40, 60, and 80 keV) acquired using dual-energy CT were compared with single-energy CT (SECT) images. For quantitative evaluation, the HU and coefficient of variation (COV) of each image were compared and analyzed. The analysis revealed that the HU of the 40 keV VMIs, acquired with a tube voltage of 70 kV and 100% contrast agent concentration, was 61% higher than that of the SECT image. The results showed that SECT had the lowest COV among all contrast agent concentration and tube voltage combinations, while the 40 keV image acquired at 70 kV had the second-lowest COV value. The HU of the 40 keV image acquired at 70 kV at a contrast agent concentration of 100% was 9% higher than that of SECT at 80% concentration. This study confirms that 40 keV VMIs are more useful than SECT images for vascular diagnosis with contrast in pediatric abdominal CT examinations and that a 20% reduction in contrast agent concentration can reduce the risk of contrast agent concentration-induced nephrotoxicity in pediatric patients by increasing the subjective acceptability of image quality for diagnosis.


Assuntos
Iodo , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Humanos , Criança , Lactente , Meios de Contraste , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos
3.
Quant Imaging Med Surg ; 10(3): 592-603, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32269920

RESUMO

BACKGROUND: To investigate the optimal monoenergetic level of spectral reconstructions in coronary computed tomography angiography (coronary CTA) on a dual-layer spectral detector computed tomography (SDCT) with half-dose contrast media. METHODS: Two hundred patients with suspected coronary artery disease (CAD) were enrolled in this prospective coronary CTA study and randomly divided into a routine-dose contrast media group and a half-dose contrast media group (each n=100). Coronary CTA was performed using SDCT with prospective electrocardiogram (ECG)-gated mode. A tube voltage of 120 kVp was used, along with an automated tube current modulation. A dose of iodixanol 270 mgI/mL of 0.8 and 0.4 mL/kg was administered to the routine and half-dose groups, respectively. For the routine-dose group, 120 kVp polychromatic images with a model-based iterative reconstruction (IMR) (Group A) were reconstructed. For the half-dose group, three monoenergetic levels of images were reconstructed (Group B, 45 keV; Group C, 50 keV; and Group D, 55 keV). Objective indicators [mean CT values; noise; signal-to-noise ratio (SNR); and contrast-to-noise ratio (CNR)] and subjective indicators (contrast, sharpness, subjective noise, and acceptability) in each group were compared. RESULTS: There were no significant differences in demographics or radiation dose (1.83±0.51 vs. 1.80±0.53 mSv, P=0.78) between the routine- and half-dose groups. The average iodine loads were 15.33±2.26 and 7.48±1.14 g, respectively. Mean CT values, SNR, CNR, and subjective contrast in Group C were higher than those in Group A (P<0.05), and there were no significant differences in other indicators between Group C and Group A (P>0.05). The objective and subjective noise in Group B were worse than those in Group A (P<0.05). The contrast, sharpness, and acceptability of Group D were all worse than those of Group A (P<0.05). CONCLUSIONS: Compared to routine polychromatic images, 50 keV monoenergetic images can provide equivalent or improved coronary image quality in coronary CTA performed on SDCT with half the amount of contrast media.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30034081

RESUMO

The purpose of this study is to determine the optimal iodine contrast-to-noise ratio (CNR) achievable for different patient sizes using virtual-monoenergetic-images (VMIs) and a universal acquisition protocol on photon-counting-detector CT (PCD-CT), and to compare results to those from single-energy (SE) and dual-source-dual-energy (DSDE) CT. Vials containing 3 concentrations of iodine were placed in torso-shaped water phantoms of 5 sizes and scanned on a 2nd generation DSDE scanner with both SE and DE modes. Tube current was automatically adjusted based on phantom size with CTDIvol ranging from 5.1 to 22.3 mGy. PCD-CT scans were performed at 140 kV, 25 and 75 keV thresholds, with CTDIvol matched to the SE scans. DE VMIs were created and CNR was calculated for SE images and DE VMIs. The optimal kV (SE) or keV (DE VMI) was chosen at the point of highest CNR with no noticeable artifacts. For 10 mgI/cc vials in the 35 cm phantom, the optimal CNR of VMIs on PCD (22.6@50keV) was comparable to that of the best DSDE protocol (23.9@50keV) and was higher than that of the best SE protocol (19.7@80kV). In general, the difference of optimal CNR between PCD and SE increased with phantom size, with PCD 50 keV VMIs having an equivalent CNR (0.6% difference) with that of SE at the 25 cm phantom and 57% higher CNR at the 45 cm phantom. PCD-CT demonstrated comparable iodine CNR of VMIs to that of DSDE across patient sizes. Whereas SE and DSDE CT exams require use of patient-size-specific acquisitions settings, our findings point to the ability of PCD-CT to simplify protocol selection, using a single VMI keV setting (50 keV), acquisition kV (140 kV), and energy thresholds (25 and 75 keV) for all patient sizes, while achieving optimal or near optimal iodine CNR values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA