Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 111(11): 2100-2109, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33851860

RESUMO

Soybean cyst nematode (SCN; Heterodera glycines) continues to be the greatest threat to soybean production in the United States. Because host resistance is the primary strategy used to control SCN, knowledge of SCN virulence phenotypes (HG types) is necessary for choosing sources of resistance for SCN management. To characterize SCN virulence phenotypes in North Dakota, a total of 419 soybean fields across 22 counties were sampled during 2015, 2016, and 2017. SCN was detected in 42% of the fields sampled, and population densities in these samples ranged from 30 to 92,800 eggs and juveniles per 100 cm3 of soil. The SCN populations from some of the infested fields were virulence-phenotyped with seven soybean indicator lines and a susceptible check ('Barnes') using the HG type tests. Overall, 73 SCN field populations were successfully virulence-phenotyped. The HG types detected in North Dakota were HG types 0 (frequency rate: 36%), 7 (27%), 2.5.7 (19%), 5.7 (11%), 1.2.5.7 (4%), and 2.7 (2%). However, before this study only HG type 0 was detected in North Dakota. The designation of each of these HG types detected was also validated by repeating the HG type tests for 33 arbitrarily selected samples. This research for the first time reports several new HG types detected in North Dakota and confirms that the virulence of SCN populations is shifting and overcoming resistance, highlighting the necessity of using different resistance sources, rotating resistance sources, and identifying novel resistance sources for SCN management in North Dakota.


Assuntos
Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea , Animais , North Dakota , Fenótipo , Tylenchoidea/patogenicidade , Virulência
2.
Plant Dis ; 104(2): 363-372, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31850835

RESUMO

The wheat leaf rust fungus, Puccinia triticina, has widespread geographical distribution in Iran within the Fertile Crescent region of the Middle East where wheat was domesticated and P. triticina originated. Therefore, it is of great importance to identify the prevalence and distribution of P. triticina pathotypes in this area. From 2010 to 2017, 241 single-uredinium isolates of P. triticina were purified from 175 collections of P. triticina made from various hosts in 14 provinces of Iran, and they were tested on 20 Thatcher near-isogenic lines carrying single-leaf rust resistance genes. In total, 86 pathotypes were identified, of which the pathotypes FDTTQ, FDKPQ, FDKTQ, and FDTNQ were most prevalent. No virulence for Lr2a was detected, whereas virulence for Lr1 was found only on bread wheat in a few provinces in 2016. Only isolates from durum wheat and wild barley were virulent to Lr28. Although virulence for Lr9, Lr20, and Lr26 was observed in some years, the virulence frequency for these genes was lower than that of the other Lr genes. P. triticina collections from host plants with different ploidy levels or genetically dissimilar backgrounds were grouped individually according to genetic distance. Based on these results, collections from barley, durum wheat, oat, triticale, and wild barley were different from those of bread wheat.


Assuntos
Basidiomycota , Doenças das Plantas , Irã (Geográfico) , Oriente Médio , Virulência
3.
Front Microbiol ; 14: 1043838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846766

RESUMO

Aeromonas hydrophila is a significant pathogen to freshwater farmed animals, and antibiotics are usually used to control the bacterial septicemia caused by A. hydrophila. Due to the severe situation of development and spread of antibiotic resistance, there are stricter restrictions on antibiotics used in aquaculture. To evaluate the feasibility of glycyrrhetinic acid ß (GA) as an alternative therapy against bacterial infection, in this study, an A. hydrophila isolated from diseased fish is used to test the antibacterial, anti-virulence activity and therapeutic effect of GA in vitro and in vivo, respectively. Results showed that GA did not affect the growth of A. hydrophila in vitro, while it could down-regulate (p < 0.05) the mRNA expression of the hemolysis-related genes hly and aerA, and significantly inhibited (p < 0.05) hemolytic activity of A. hydrophila. In addition, in vivo test showed that oral administration of GA was ineffective in controlling acute infections caused by A. hydrophila. In conclusion, these findings suggested that GA was a potential anti-virulence candidate against A. hydrophila, but the application of GA for the prevention and treatment of A. hydrophila-related diseases was still a long way.

4.
Front Cell Infect Microbiol ; 11: 635673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912474

RESUMO

Acinetobacter baumannii has been recognized as a critical pathogen that causes severe infections worldwide not only because of the emergence of extensively drug-resistant (XDR) derivatives, but also because of its ability to persist in medical environments and colonize compromised patients. While there are numerous reports describing the mechanisms by which this pathogen acquires resistance genes, little is known regarding A. baumannii's virulence functions associated with rare manifestations of infection such as necrotizing fasciitis, making the determination and implementation of alternative therapeutic targets problematic. To address this knowledge gap, this report describes the analysis of the NFAb-1 and NFAb-2 XDR isolates, which were obtained at two time points during a fatal case of necrotizing fasciitis, at the genomic and functional levels. The comparative genomic analysis of these isolates with the ATCC 19606T and ATCC 17978 strains showed that the NFAb-1 and NFAb-2 isolates are genetically different from each other as well as different from the ATCC 19606T and ATCC 17978 clinical isolates. These genomic differences could be reflected in phenotypic differences observed in these NFAb isolates. Biofilm, cell viability and flow cytometry assays indicate that all tested strains caused significant decreases in A549 human alveolar epithelial cell viability with ATCC 17978, NFAb-1 and NFAb-2 producing significantly less biofilm and significantly more hemolysis and capacity for intracellular invasion than ATCC 19606T. NFAb-1 and NFAb-2 also demonstrated negligible surface motility but significant twitching motility compared to ATCC 19606T and ATCC 17978, likely due to the presence of pili exceeding 2 µm in length, which are significantly longer and different from those previously described in the ATCC 19606T and ATCC 17978 strains. Interestingly, infection with cells of the NFAb-1 isolate, which were obtained from a premortem blood sample, lead to significantly higher mortality rates than NFAb-2 bacteria, which were obtained from postmortem tissue samples, when tested using the Galleria mellonella in vivo infection model. These observations suggest potential changes in the virulence phenotype of the A. baumannii necrotizing fasciitis isolates over the course of infection by mechanisms and cell processes that remain to be identified.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Fasciite Necrosante , Antibacterianos , Biofilmes , Genômica , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA