Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431877

RESUMO

Developing an efficient fracturing fluid system is an enduring hot topic in the petrochemical industries, especially regarding the exploitation of limited oil. Biopolymers, especially polysaccharides (e.g., konjac gum, guar gum), are widely applied as fracturing fluids in fracturing as a result of their advantages. Herein, we propose an easy method of modifying konjac gum (KGM) using isopropanol, sodium hydroxide, and chloroacetic acid to obtain modified konjac glum (MKGM). The MKGM and KGM gels were also obtained by using the self-prepared organic titanium high-temperature stabilizer and organic borate cross-linker. The prepared MKGM was characterized by multiscale techniques, including attenuated total reflection Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and rheology properties. The ATR-FTIR results showed that the etherification modification reaction occurred as designed. The XRD results showed that the regularity of KGM was destroyed after modification. The TGA and DSC results showed that the thermal stability improved. Rheology measurements illustrated that the temperature and shear resistance of MKGM were better than those of KGM. The MKGM gel could be applied in fracturing fluid systems at a lower frequency through viscoelastic measurements.


Assuntos
Amorphophallus , Fraturas Ósseas , Biopolímeros , Reologia , Difração de Raios X
2.
Int J Eng Sci ; 170: 103604, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728858

RESUMO

The SARS-CoV-2 virus, which has emerged as a Covid-19 pandemic, has had the most significant impact on people's health, economy, and lifestyle around the world today. In the present study, the SARS-CoV-2 virus is mechanically simulated to obtain its deformation and natural frequencies. The virus under analysis is modeled on a viscoelastic spherical structure. The theory of shell structures in mechanics is used to derive the governing equations. Whereas the virus has nanometric size, using classical theories may give incorrect results. Consequently, the nonlocal elasticity theory is used to consider the effect of interatomic forces on the results. From the mechanical point of view, if a structure vibrates with a natural frequency specific to it, the resonance phenomenon will occur in that structure, leading to its destruction. Therefore, it is possible that the protein chains of SARS-CoV-2 would be destroyed by vibrating it at natural frequencies. Since the mechanical properties of SARS-CoV-2 are not clearly known due to the new emergence of this virus, deformation and natural frequencies are obtained in a specific interval. Researchers could also use this investigation as a pioneering study to find a non-vaccine treatment solution for the SARS-CoV-2 virus and various viruses, including HIV.

3.
Sensors (Basel) ; 21(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925922

RESUMO

This paper proposes a new type of tactile transfer cell which can be effectively applied to robot-assisted minimally invasive surgery (RMIS). The proposed tactile device is manufactured from two smart materials, a magnetorheological fluid (MRF) and a magnetorheological elastomer (MRE), whose viscoelastic properties are controllable by an external magnetic field. Thus, it can produce field-dependent repulsive forces which are equivalent to several human organs (or tissues) such as a heart. As a first step, an appropriate tactile sample is made using both MRF and MRE associated with porous foam. Then, the microstructures of these materials taken from Scanning Electron Microscope (SEM) images are presented, showing the particle distribution with and without the magnetic field. Subsequently, the field-dependent repulsive force of the sample, which is equivalent to the stress relaxation property of viscoelastic materials, are measured at several compressive deformation depths. Then, the measured values are compared with the calculated values obtained from Young's modulus of human tissue data via the finite element method. It is identified from this comparison that the proposed tactile transfer cell can mimic the repulsive force (or hardness) of several human organs. This directly indicates that the proposed MR materials-based tactile transfer cell (MRTTC in short) can be effectively applied to RMIS in which the surgeon can feel the strength or softness of the human organ by just changing the magnetic field intensity. In this work, to reflect a more practical feasibility, a psychophysical test is also carried out using 20 volunteers, and the results are analyzed, presenting the standard deviation.


Assuntos
Robótica , Módulo de Elasticidade , Dureza , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Tato
4.
Comput Mater Sci ; 1912021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33737768

RESUMO

Incorporating graphene nanosheets into a polymer matrix is a promising way to utilize the remarkable electronic, thermal, and mechanical properties of graphene. However, the underlying mechanisms near the graphene-polymer interface remain poorly understood. In this study, we employ coarse-grained molecular dynamics (MD) simulations to investigate the nanoscale mechanisms present in graphene-reinforced polycarbonate (GRPC) and the effect of those mechanisms on GRPC's mechanical properties. With a mean-squared displacement analysis, we find that the polymer chains near the GRPC interface exhibit lower mobility than the chains further from the graphene sheet. We also show that the embedding of graphene increases Young's modulus and yield strength of bulk PC. Through non-equilibrium MD simulations and a close look into the deformation mechanisms, we find that early strain localization arises in GRPC, with voids being concentrated further away from the graphene sheet. These results indicate that graphene nanosheets promote the heterogeneous deformation of GRPC. Additionally, to gain deeper insight into the mechanical, interfacial, and viscoelastic properties of GRPC, we study the effects of varying PC chain lengths and interfacial interactions as well as the comparative performance of GRPC and PC under small amplitude oscillatory shear tests. We find that increasing the interfacial interaction leads to an increase in both storage and loss moduli, whereas varying chain length has minimal influence on the dynamic modulus of GRPC. This study contributes to the fundamental understanding of the nanoscale failure mechanisms and structure-property relationships of graphene reinforced polymer nanocomposites.

5.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158027

RESUMO

Organogel (OG) is a class of semi-solid gel, entrapping organic solvent within a three-dimensional network, which is formed via the self-assembly of organogelators. In the present study, OG was produced by glycerol monolaurate (GML) as organogelator. The influence of hydrocolloids with different surface charges (chitosan (CS), konjac glucomannan (KGM) and sodium alginate (SA)) on the physiochemical properties of OG was investigated. Rheological studies demonstrated that OG and pure hydrocolloid solution showed shear-thinning behavior. After incorporation of the hydrocolloid, the initial viscosity of OG was lowered from ~100 Pa·s to <10 Pa·s, and then the viscosity increased to more than 100 Pa·s at a low shear rate of 0.1-0.2 s-1, which subsequently decreased with a higher shear rate. OGs in the presence of hydrocolloids still kept the thermo-sensitivity, while the melting point of the OG decreased with the incorporation of hydrocolloids. Hydrocolloid addition greatly shortened the gelling time of the OG from 21 min to less than 2 min. The presence of hydrocolloids increased the particle size of oil droplets in the molten OG. Some aggregation and coalescence of oil droplets occurred in the presence of positive-charged CS and negative-charged SA, respectively. After gelling, the gel structure converted into a biphasic-like network. Hydrocolloids improved the hardness, stickiness and the oil-holding stability of OGs by 18.8~33.9%. Overall, hydrocolloid incorporation could modulate the properties of OGs through their different surface charge properties. These novel OGs have potential as nutrient carriers or low-fat margarine alternatives and avoid the trans-fatty acid intake.


Assuntos
Lauratos/química , Monoglicerídeos/química , Coloides , Tamanho da Partícula , Reologia , Propriedades de Superfície , Viscosidade
6.
BMC Musculoskelet Disord ; 20(1): 417, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492126

RESUMO

BACKGROUND: Biomechanical changes in articular cartilage are associated with the onset of osteoarthritis. We developed an optical coherence tomography-based strain rate tomography method: stress relaxation optical coherence straingraphy (SR-OCSA). The purpose of this study was to establish an approach for measuring mechanical properties of articular cartilage using SR-OCSA, and to investigate the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. METHODS: Anterior cruciate ligament transection surgery was performed on the left knees of 8-9-month-old New Zealand white rabbits. SR-OCSA was used to visualize and measure the viscoelastic properties of articular cartilage via attenuation coefficient of strain rate (ACSR). Using the same conditions as in the SR-OCSA test, an indentation test was conducted, and relaxation time was measured to evaluate the relationship between ACSR and relaxation time. RESULTS: SR-OCSA could nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. SR-OCSA captured significant increases in ACSR in cartilage at 2 weeks after surgery, when a histologically slight osteoarthritis sign was present. As cartilage degeneration progressed, ACSR increased, whereas relaxation time decreased in a time-dependent manner. Moreover, ACSR negatively correlated with relaxation time. In particular, ACSR was elevated around the tidemark and the elevation tended to move as cartilage degeneration progressed. CONCLUSIONS: SR-OCSA could tomographically and nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. The mechanical properties around the tidemark were degraded as cartilage degeneration progressed. Thus, SR-OCSA provides important data needed to understand the biomechanics of early osteoarthritis.


Assuntos
Cartilagem Articular/patologia , Articulação do Joelho/patologia , Osteoartrite do Joelho/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Animais , Ligamento Cruzado Anterior/cirurgia , Cartilagem Articular/diagnóstico por imagem , Modelos Animais de Doenças , Elasticidade , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/patologia , Coelhos , Estresse Mecânico , Fatores de Tempo
7.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200473

RESUMO

The morphology of magnetic particles with a size of 7.0 µm was observed for magnetic elastomers with a concentration of magnetic particles of 70 wt% using an X-ray microscope remolded into high resolution. Computed tomography images revealed that magnetic particles were distributed isotopically in the absence of a magnetic field, but they formed a chain structure in the polyurethane network under a magnetic field of 270 mT. It was also established, by image analysis, that magnetic elastomers had an anisotropic structure under the magnetic field.


Assuntos
Campos Magnéticos , Imãs/química , Poliuretanos/química , Reagentes de Ligações Cruzadas/química , Elasticidade , Polimerização , Viscosidade
8.
Molecules ; 24(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841558

RESUMO

A indentation-based device to measure tissue mechanical property was designed and built using over-the-counter and 3D-printed parts. The device costs less than 100 USD and is capable of measuring samples of various geometry because of its modular design. The device is light-weight, thus portable, for measurements that can be performed at different sites. It was demonstrated that the measurement results obtained using our device are comparable to previous observations. The elastic shear modulus of the human skin was in the range of 2 kPa to 8 kPa, and skin tissues in old mice were stiffer than young mice. Mechanical properties of the skin tissues belonging to the same test subject varied depending on the location of the measurement. In conclusion, because our device is economic, modular, portable, and robust, it is suitable to serve as a standard measurement platform for studying tissue mechanics.


Assuntos
Módulo de Elasticidade , Elasticidade , Fenômenos Mecânicos , Fenômenos Fisiológicos da Pele , Viscosidade , Animais , Desenho de Equipamento , Feminino , Humanos , Estudos Longitudinais , Masculino , Camundongos , Modelos Teóricos , Estresse Mecânico
9.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29210490

RESUMO

A new approach based on macromolecular engineering through thermoreversibility is reported to fabricate the engineered gel networks of thermally labile branched polymers exhibiting robust self-healing. This approach centers on the synthesis of linear polymers having Diels-Alder cycloadducts in the backbones (DALPs) through A2 + B2 step-growth polymerization of a difunctional furan and a difunctional maleimide. Reactive mixtures of the resulting DALP with a polyfuran at elevated temperature allow for the formation of engineered gel networks through random dissociation of backbone DA linkages of the DALPs by retro-Diels-Alder reaction, followed by their reconstruction in the presence of polyfuran (with functionality > 2) by Diels-Alder reaction. Optimizing the ratio of furan to DA linkages in the reactive mixtures yields thermally labile networks exhibiting excellent thermoreversibility. Effective self-healing demonstrated with reconstruction from two separate pieces and complete void filling on surface cuts as well as recovery of healing viscoelasticity suggest that the new macromolecular engineering approach offers versatility toward the development of thermally mendable thermosets.


Assuntos
Substâncias Macromoleculares/química , Maleimidas/química , Polímeros/química , Temperatura , Compostos de Anilina/química , Reação de Cicloadição , Furanos/química , Modelos Químicos , Estrutura Molecular , Polimerização , Substâncias Viscoelásticas/química
10.
J Biol Phys ; 43(4): 525-534, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28879538

RESUMO

Persistence length is one of the most interesting properties of a molecular chain, which is used to describe the stiffness of a molecule. The experimentally measured values of the persistence length of the collagen molecule are widely scattered from 14 to 180 nm. Therefore, an alternative approach is highly desirable to predict the persistence length of a molecule and also to explain the experimental results. In this paper, a nonlocal viscoelastic model is developed to obtain the persistence length of the collagen molecules in solvent. A new explicit formula is proposed for the persistence length of the molecule with the consideration of the small-scale effect, viscoelastic properties of the molecule, loading frequency, and viscosity of the solvent. The presented model indicates that there exists a range of molecule lengths in which the persistence length strongly depends on the frequency and spatial mode of applied loads, small-scale effect, and viscoelastic properties of the collagen.


Assuntos
Colágeno/química , Elasticidade , Modelos Moleculares , Conformação Proteica , Viscosidade
12.
Sci Prog ; 107(1): 368504231223037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439712

RESUMO

BACKGROUND: In the reconstruction of large complex cutaneous wounds, a myriad of mechanical devices has been designed to facilitate primary wound closure. However, there is a dearth of studies elucidating how best to achieve optimum use and efficiency of skin stretching (SS) when using the device for immediate primary closure of defects. METHODS: Skin defect wounds (7 × 7 cm) were prepared on the back of three Bama miniature pigs. A total of 15 cycles of SS (cycle loading) were subsequently performed on the skin edges of the wound by EASApprox® SS system. Then, the changes in equidistant points were recorded after each cycle. After the SS test, all wounds were sutured under low tension. RESULTS: Skin elongation was observed at all equidistant points on the back wounds of three Bama miniature pigs. Up to an additional 1.10 to 3.75 cm of tissue was garnered. The maximum skin elongation was typically achieved within eight cycles of stretching and relaxation. Beyond this range, additional stretching cycles did not result in further skin extension. CONCLUSION: There may be a close link between mobilization range and the times of acute cyclic stretching (cycle loading) during the process of primary wound closure. However, larger studies are required to further evaluate the accuracy and effectiveness.


Assuntos
Pele , Animais , Suínos , Porco Miniatura
13.
Materials (Basel) ; 17(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473556

RESUMO

This study analyzed the viscoelastic properties of asphalt binders reinforced with various fibers, such as modified asphalt binder, modified asphalt binder reinforced with lignin fibers (LFs), polyester fibers (PFs), and polypropylene fibers (PPFs), using dynamic shear rheological (DSR) testing. Then, the experiment generated data on the dynamic modulus and phase angle, which described the dynamic rheological characteristics at varying temperatures. The generalized Maxwell model was employed to select the appropriate element, and the test curve was fitted into a discrete time spectrum based on the time-temperature equivalence principle (TTSP). The master curves of the relaxation modulus and creep compliance were established to predict the relaxation and creep properties of various asphalt binders. The analysis indicated that fiber-reinforced binders offer superior resistance to high temperatures and long-term deformation, while being less sensitive to temperature and having a more significant elastic characterization. The binders reinforced with PPFs and LFs exhibited superior performance in high-temperature settings and long-term durability, respectively. On the other hand, the binder reinforced with PFs displayed exceptional high-temperature elastic properties. Additionally, based on the experimental data and corresponding discussion, it appears that the 13-element GM model is more appropriate for fitting the data.

14.
J Biomech ; 162: 111908, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142667

RESUMO

Mechanical properties of biological systems provide essential insights into their component, physiological function, and disease mechanism under various conditions, such as age, health, and other environmental factors. Viscoelasticity is one of the most important and investigated properties to study biomaterials, cells, and tissues, as they exhibit the characteristics of both fluid-like behavior, viscosity, and solid-like behavior, elasticity. Various mathematical models, such as the Kelvin-Voigt and Maxwell models, have been developed and practiced to estimate and extract viscoelastic properties. However, one of the inherent challenges with the use of these models is the poor transferability of mathematically estimated viscoelastic properties across different models, largely due to variations in constituent elements and their arrangements within each model. This issue impedes the interconversion of parameters of one model to another and complicates comparison across models. In this study, we demonstrate the equivalence between the generalized Maxwell and generalized Kelvin-Voigt models through two distinct approaches: indirect, Maxwell model-based Kelvin-Voigt model estimation and direct, curve fitting-based Kelvin-Voigt model estimation. We utilized human melanoma skin tissues to estimate viscoelastic properties using the Prony series. The estimated parameters and resulting viscoelastic properties revealed no significant difference between the two approaches and between the two patients. This study is the first experimental validation of the mathematical interconversion of the two models, signifying that this approach will enable an accurate and objective analysis and comparison of mechanical properties across various viscoelastic models.


Assuntos
Modelos Teóricos , Pele , Humanos , Elasticidade , Viscosidade , Materiais Biocompatíveis , Modelos Biológicos
15.
Biomech Model Mechanobiol ; 22(3): 1003-1018, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36881185

RESUMO

Damping plays an important role in the middle ear (ME) sound transmission system. However, how to mechanically characterize the damping of ME soft tissues and the role of damping in ME sound transmission have not yet reached a consensus. In this paper, a finite element (FE) model of the partial external and ME of the human ear, considering both Rayleigh damping and viscoelastic damping for different soft tissues, is developed to quantitatively investigate the damping in soft tissues effects on the wide-frequency response of the ME sound transmission system. The model-derived results can capture the high-frequency (above 2 kHz) fluctuations and obtain the 0.9 kHz resonant frequency (RF) of the stapes velocity transfer function (SVTF) response. The results show that the damping of pars tensa (PT), stapedial annular ligament (SAL) and incudostapedial joints (ISJ) can help smooth the broadband response of the umbo and stapes footplate (SFP). It is found that, between 1 and 8 kHz, the damping of the PT increases the magnitude and phase delay of the SVTF above 2 kHz while the damping of the ISJ can avoid excessive phase delay of the SVTF, which is important in maintaining the synchronization in high-frequency vibration but has not been revealed before. Below 1 kHz, the damping of the SAL plays a more important role, and it can decrease the magnitude but increases the phase delay of the SVTF. This study has implications for a better understanding of the mechanism of ME sound transmission.


Assuntos
Orelha Média , Som , Humanos , Orelha Média/fisiologia , Estribo/fisiologia , Vibração , Membrana Timpânica/fisiologia
16.
Materials (Basel) ; 16(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630018

RESUMO

The performance of asphalt binders and asphalt mixtures can be enhanced by the inclusion of fiber. The viscoelastic characteristics of fiber-reinforced asphalt binders and their corresponding mixtures were characterized in this study. To generate fiber-reinforced asphalt samples for dynamic shear rheometer (DSR) tests, polypropylene fibers (PPFs), polyester fibers (PFs), and lignin fibers (LFs) were added into modified asphalt with a ratio of 5wt%. Indirect tensile resilience tests were conducted on the fiber-reinforced asphalt mixture with Marshall samples, which was prepared with a 6.4% of bitumen/aggregate ratio. The addition of fiber can increase the anti-rutting performance of asphalt binders, and also reduce the anti-fatigue performance of asphalt binders to varying degrees. Viscoelastic properties of the fiber-reinforced asphalt binders are highly dependent on the shape of the used fiber. The resistance of the fiber-reinforced asphalt binders to rutting at high temperatures increases with the roughness degree of the fiber's surface morphology. PPF-reinforced asphalt binders surpass the others in terms of anti-rutting capabilities. The high-temperature deformation resistance of the PPF-reinforced asphalt mixture is stronger, whereas the low-temperature crack resistance of the PF-reinforced asphalt mixture is stronger, which can be observed from the master curve of indirect tensile resilient modulus.

17.
Carbohydr Polym ; 321: 121316, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739540

RESUMO

Galactoglucomannans (GGM) recovered from abundant forest industry side-streams has been widely recognized as a renewable hydrocolloid. The low molar mass and presence of O-acetyl side-groups results in low viscous dispersions and weak intermolecular interactions that make GGM unsuitable for hydrogel formation, unless forcefully chemically derivatized and/or crosslinked with other polymers. Here we present the characterization of hydrogels prepared from GGM after tailoring the degree of acetylation by alkaline treatment during its recovery. Specifically, we investigated gel characteristics of low-acetyl GGM dispersions prepared at varied solid concentrations (5, 10 and 15 %) and pH (4, 7 and 10), and then subjected to ultrasonication. The results indicated that low-acetyl GGM dispersions formed gels (G' > G″) at all other studied solid concentration and pH level combinations except 5 % and pH 4. High pH levels, leading to further removal of acetyl groups, and high solid concentration facilitated the gel formation. GGM hydrogels were weak gels with strong shear-thinning behavior and thixotropic properties, and high hardness and water holding capacity; which were enhanced with increased pH and solid concentration, and prolonged storage time. Our study showed the possibility to utilize low-acetyl GGM as mildly processed gelling or thickening agents, and renewable materials for bio-based hydrogels.


Assuntos
Hidrogéis , Picea , Mananas , Acetilação , Dureza
18.
Korean J Radiol ; 24(6): 564-573, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37271210

RESUMO

OBJECTIVE: To investigate the feasibility of assessing the viscoelastic properties of the brain using magnetic resonance elastography (MRE) and a novel MRE transducer to determine the relationship between the viscoelastic properties and glymphatic function in neurologically normal individuals. MATERIALS AND METHODS: This prospective study included 47 neurologically normal individuals aged 23-74 years (male-to-female ratio, 21:26). The MRE was acquired using a gravitational transducer based on a rotational eccentric mass as the driving system. The magnitude of the complex shear modulus |G*| and the phase angle ϕ were measured in the centrum semiovale area. To evaluate glymphatic function, the Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) method was utilized and the ALPS index was calculated. Univariable and multivariable (variables with P < 0.2 from the univariable analysis) linear regression analyses were performed for |G*| and ϕ and included sex, age, normalized white matter hyperintensity (WMH) volume, brain parenchymal volume, and ALPS index as covariates. RESULTS: In the univariable analysis for |G*|, age (P = 0.005), brain parenchymal volume (P = 0.152), normalized WMH volume (P = 0.011), and ALPS index (P = 0.005) were identified as candidates with P < 0.2. In the multivariable analysis, only the ALPS index was independently associated with |G*|, showing a positive relationship (ß = 0.300, P = 0.029). For ϕ, normalized WMH volume (P = 0.128) and ALPS index (P = 0.015) were identified as candidates for multivariable analysis, and only the ALPS index was independently associated with ϕ (ß = 0.057, P = 0.039). CONCLUSION: Brain MRE using a gravitational transducer is feasible in neurologically normal individuals over a wide age range. The significant correlation between the viscoelastic properties of the brain and glymphatic function suggests that a more organized or preserved microenvironment of the brain parenchyma is associated with a more unimpeded glymphatic fluid flow.


Assuntos
Técnicas de Imagem por Elasticidade , Sistema Glinfático , Humanos , Masculino , Feminino , Sistema Glinfático/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
19.
Front Bioeng Biotechnol ; 11: 1162880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091343

RESUMO

Melanoma is the most invasive and deadly skin cancer, which causes most of the deaths from skin cancer. It has been demonstrated that the mechanical properties of tumor tissue are significantly altered. However, data about characterizing the mechanical properties of in vivo melanoma tissue are extremely scarce. In addition, the viscoelastic or viscous properties of melanoma tissue are rarely reported. In this study, we measured and quantitated the viscoelastic properties of human melanoma tissues based on the stress relaxation test, using the indentation-based mechanical analyzer that we developed previously. The melanoma tissues from eight patients of different ages (57-95), genders (male and female patients), races (White and Asian), and sites (nose, arm, shoulder, and chest) were excised and tested. The results showed that the elastic property (i.e., shear modulus) of melanoma tissue was elevated compared to normal tissue, while the viscous property (i.e., relaxation time) was reduced. Moreover, the tissue thickness had a significant impact on the viscoelastic properties, probably due to the amount of the adipose layer. Our findings provide new insights into the role of the viscous and elastic properties of melanoma cell mechanics, which may be implicated in the disease state and progression.

20.
Gels ; 10(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38247743

RESUMO

High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this study, the viscoelastic behaviors of prepared materials in both solution and gel states were extensively examined, considering the UV exposure time and crosslinker concentration as key factors. The effect of these factors on gel formation, hydrogel structures, thermal stabilities of networks, and HeLa cell adhesion were studied sequentially. The sol-gel transition was effectively demonstrated through the scaling law, which agrees well with Winter and Chambon's theory. By subjecting the CS hydrogel to the process operation in an ethanol solution, its properties can be significantly enhanced with increased crosslinker concentration, including the shear modulus, crosslinking degree, gel strength, and thermal stability in its swollen state. The IPN samples exhibit a smooth and dense surface with irregular pores, allowing for much water absorption. The HeLa cells were adhered to and killed using the CS surface cationic charges and then released through hydrolysis by utilizing the hydrophilic/hydrophobic switchable property or thermo-reversible gelation of the PNiPAM network. The results demonstrated that IPN is a highly attractive candidate for anti-fouling materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA