Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(15): 6690-6695, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34286586

RESUMO

Dynamic control over the polarization of light is highly desirable in many optical applications, including optical communications, laser science, three-dimensional displays, among others. Conventional methods for polarization control are often based on bulky optical elements. To achieve highly integrated optical devices, metasurfaces, which have been intensively studied in recent years, hold great promises to replace conventional optical elements for a variety of optical functions. In this work, we demonstrate electrically tunable optical metasurfaces for dynamic polarization conversion at visible frequencies. By exploring both the geometric and propagation phase tuning capabilities, rapid and reversible polarization rotation up to 90° is achieved for linearly polarized light. The dynamic functionality is imparted by liquid crystals, which serve as a thin surrounding medium with electrically tunable refractive indices for the metasurface antennas. Furthermore, we expand our concept to demonstrate electrically tunable metasurfaces for dynamic holography and holographic information generation with independently controlled multiple pixels.

2.
Nanomaterials (Basel) ; 13(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37368312

RESUMO

Perfect metamaterial absorber (PMA) is an attractive optical wavelength absorber with potential solar energy and photovoltaic applications. Perfect metamaterials used as solar cells can improve efficiency by amplifying incident solar waves on the PMA. This study aims to assess a wide-band octagonal PMA for a visible wavelength spectrum. The proposed PMA consists of three layers: nickel, silicon dioxide, and nickel. Based on the simulations, polarisation-insensitive absorption transverse electric (TE) and transverse magnetic (TM) modes were achieved due to symmetry. The proposed PMA structure was subjected to computational simulation using a FIT-based CST simulator. The design structure was again confirmed using FEM-based HFSS to maintain pattern integrity and absorption analysis. The absorption rates of the absorber were estimated at 99.987% and 99.997% for 549.20 THz and 653.2 THz, respectively. The results indicated that the PMA could achieve high absorption peaks in TE and TM modes despite being insensitive to polarisation and the incident angle. Electric field and magnetic field analyses were performed to understand the absorption of the PMA for solar energy harvesting. In conclusion, the PMA possesses outstanding visible frequency absorption, making it a promising option.

3.
Adv Mater ; 30(21): e1706696, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29635805

RESUMO

The metal-dielectric stacks-based asymmetric Fabry-Perot (F-P) cavity systems have recently attracted much interest from the scientific community for realizing perfect absorption over the spectral bands from visible to infrared since they possess a lithography-free design that is cost-effective and scalable. This study experimentally demonstrates an asymmetric F-P cavity system for achieving tunable wide angle perfect absorption and phase singularity. The proposed system shows tunable multiband perfect absorption in the visible spectral region by incorporating an ultrathin layer of phase change material such as Ge2 Sb2 Te5 (GST) in the stack. The system shows multi-narrowband perfect absorption with a maximum of 99.8% at a specific incident angle and polarization state when the GST is in amorphous phase; however, the absorption bands blueshift and broaden after switching to the crystalline phase. More importantly, the proposed scheme shows tunable phase singularity at the reflection-less point. The obtained tunable perfect absorption and abrupt phase change are solely due to the presence of a highly absorbing ultrathin layer of GST in the stack. Experimental results are validated using an analytical simulation model based on a transfer matrix method. The proposed scheme could find potential applications in active photonic devices such as phase-sensitive biosensors and absorption filters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA