RESUMO
Electrical Impedance Tomography (EIT) has the potential to be able to observe functional tomographic images of neural activity in the brain at millisecond time-scales. Prior modelling and experimental work has shown that EIT is capable of imaging impedance changes from neural depolarisation in rat somatosensory cortex. Here, we investigate the feasibility of EIT for imaging impedance changes using a stereotaxically implanted microelectrode array in the thalamus. Microelectrode array EIT was simulated using an anatomically accurate marmoset brain model. Impedance imaging was validated and detectability estimated using physiological noise recorded from the marmoset visual thalamus. The results suggest that visual-input-driven impedance changes in visual subcortical bodies within 300⯵m of the implanted array could be reliably reconstructed and localised, comparable to local field potential measurements. Furthermore, we demonstrated that microelectrode array EIT could reconstruct concurrent activity in multiple subcortical bodies simultaneously.
Assuntos
Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Tálamo/fisiologia , Tomografia/instrumentação , Tomografia/métodos , Animais , Callithrix , Impedância Elétrica , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Modelos NeurológicosRESUMO
Retinal ganglion cell (RGC) axons provide direct input into several brain regions, including the dorsal lateral geniculate nucleus (dLGN), which is important for image-forming vision, and the ventrolateral geniculate nucleus (vLGN), which is associated with nonimage-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), timing of corticogeniculate innervation, and recruitment and distribution of inhibitory interneurons. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and nonretinorecipient internal vLGN (vLGNi). Studies previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-type-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for these laminae in the mouse vLGNe, and results indicate that these laminae are specified at or before birth. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell-type-specific layers in mouse vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Assuntos
Corpos Geniculados , Camundongos Transgênicos , Vias Visuais , Animais , Corpos Geniculados/fisiologia , Vias Visuais/fisiologia , Vias Visuais/crescimento & desenvolvimento , Retina/fisiologia , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/fisiologia , Camundongos Endogâmicos C57BL , Camundongos , Fator de Transcrição Brn-3A/metabolismo , Fator de Transcrição Brn-3A/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Neurônios/fisiologiaRESUMO
Introduction: The visual signals evoked at the retinal ganglion cells are modified and modulated by various synaptic inputs that impinge on lateral geniculate nucleus cells before they are sent to the cortex. The selectivity of geniculate inputs for clustering or forming microcircuits on discrete dendritic segments of geniculate cell types may provide the structural basis for network properties of the geniculate circuitry and differential signal processing through the parallel pathways of vision. In our study, we aimed to reveal the patterns of input selectivity on morphologically discernable relay cell types and interneurons in the mouse lateral geniculate nucleus. Methods: We used two sets of Scanning Blockface Electron Microscopy (SBEM) image stacks and Reconstruct software to manually reconstruct of terminal boutons and dendrite segments. First, using an unbiased terminal sampling (UTS) approach and statistical modeling, we identified the criteria for volume-based sorting of geniculate boutons into their putative origins. Geniculate terminal boutons that were sorted in retinal and non-retinal categories based on previously described mitochondrial morphology, could further be sorted into multiple subpopulations based on their bouton volume distributions. Terminals deemed non-retinal based on the morphological criteria consisted of five distinct subpopulations, including small-sized putative corticothalamic and cholinergic boutons, two medium-sized putative GABAergic inputs, and a large-sized bouton type that contains dark mitochondria. Retinal terminals also consisted of four distinct subpopulations. The cutoff criteria for these subpopulations were then applied to datasets of terminals that synapse on reconstructed dendrite segments of relay cells or interneurons. Results: Using a network analysis approach, we found an almost complete segregation of retinal and cortical terminals on putative X-type cell dendrite segments characterized by grape-like appendages and triads. On these cells, interneuron appendages intermingle with retinal and other medium size terminals to form triads within glomeruli. In contrast, a second, presumed Y-type cell displayed dendrodendritic puncta adherentia and received all terminal types without a selectivity for synapse location; these were not engaged in triads. Furthermore, the contribution of retinal and cortical synapses received by X-, Y- and interneuron dendrites differed such that over 60% of inputs to interneuron dendrites were from the retina, as opposed to 20% and 7% to X- and Y-type cells, respectively. Conclusion: The results underlie differences in network properties of synaptic inputs from distinct origins on geniculate cell types.
RESUMO
Light is a powerful modulator of non-visual functions. Although accumulating evidence suggests an antinociceptive effect of bright light treatment, the precise circuits that mediate the effects of light on nocifensive behaviors remain unclear. Here, we show that bright light treatment suppresses mouse nocifensive behaviors through a visual circuit related to the lateral and ventral lateral parts of the periaqueductal gray area (l/vlPAG). Specifically, a subset of retinal ganglion cells (RGCs) innervates GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which in turn inhibit GABAergic neurons in the l/vlPAG. The activation of vLGN/IGL-projecting RGCs, activation of l/vlPAG-projecting vLGN/IGL neurons, or inhibition of postsynaptic l/vlPAG neurons is sufficient to suppress nocifensive behaviors. Importantly, we demonstrate that the antinociceptive effects of bright light treatment are dependent on the activation of the retina-vLGN/IGL-l/vlPAG pathway. Together, our results delineate an l/vlPAG-related visual circuit underlying the antinociceptive effects of bright light treatment.
Assuntos
Substância Cinzenta Periaquedutal , Vias Visuais , Analgésicos/farmacologia , Animais , Corpos Geniculados/fisiologia , Camundongos , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologiaRESUMO
Visual information reaches cortex via the thalamic dorsal lateral geniculate nucleus (dLGN). dLGN activity is modulated by global sleep/wake states and arousal, indicating that it is not simply a passive relay station. However, its potential for more specific visuomotor integration is largely unexplored. We addressed this question by developing robust 3D video reconstruction of mouse head and body during spontaneous exploration paired with simultaneous neuronal recordings from dLGN. Unbiased evaluation of a wide range of postures and movements revealed a widespread coupling between neuronal activity and few behavioral parameters. In particular, postures associated with the animal looking up/down correlated with activity in >50% neurons, and the extent of this effect was comparable with that induced by full-body movements (typically locomotion). By contrast, thalamic activity was minimally correlated with other postures or movements (e.g., left/right head and body torsions). Importantly, up/down postures and full-body movements were largely independent and jointly coupled to neuronal activity. Thus, although most units were excited during full-body movements, some expressed highest firing when the animal was looking up ("look-up" neurons), whereas others expressed highest firing when the animal was looking down ("look-down" neurons). These results were observed in the dark, thus representing a genuine behavioral modulation, and were amplified in a lit arena. Our results demonstrate that the primary visual thalamus, beyond global modulations by sleep/awake states, is potentially involved in specific visuomotor integration and reveal two distinct couplings between up/down postures and neuronal activity.
Assuntos
Corpos Geniculados , Tálamo , Animais , Nível de Alerta , Corpos Geniculados/fisiologia , Camundongos , Movimento , Neurônios/fisiologia , Tálamo/fisiologia , Vias VisuaisRESUMO
Higher-order visual thalamus communicates broadly and bi-directionally with primary and extrastriate cortical areas in various mammals. In primates, the pulvinar is a topographically and functionally organized thalamic nucleus that is largely dedicated to visual processing. Still, a more granular connectivity map is needed to understand the role of thalamocortical loops in visually guided behavior. Similarly, the secondary visual thalamic nucleus in mice (the lateral posterior nucleus, LP) has extensive connections with cortex. To resolve the precise connectivity of these circuits, we first mapped mouse visual cortical areas using intrinsic signal optical imaging and then injected fluorescently tagged retrograde tracers (cholera toxin subunit B) into retinotopically-matched locations in various combinations of seven different visual areas. We find that LP neurons representing matched regions in visual space but projecting to different extrastriate areas are found in different topographically organized zones, with few double-labeled cells (~4-6%). In addition, V1 and extrastriate visual areas received input from the ventrolateral part of the laterodorsal nucleus of the thalamus (LDVL). These observations indicate that the thalamus provides topographically organized circuits to each mouse visual area and raise new questions about the contributions from LP and LDVL to cortical activity.
Assuntos
Mapeamento Encefálico/métodos , Núcleos Laterais do Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Núcleos Laterais do Tálamo/química , Masculino , Camundongos Endogâmicos C57BL , Córtex Visual/química , Vias Visuais/químicaRESUMO
The brain can flexibly filter out sensory information in a manner that depends on behavioral state. In the visual thalamus and cortex, arousal and locomotion are associated with changes in the magnitude of responses to visual stimuli. Here, we asked whether such modulation of visual responses might already occur at an earlier stage in this visual pathway. We measured neural activity of retinal axons using wide-field and two-photon calcium imaging in awake mouse thalamus across arousal states associated with different pupil sizes. Surprisingly, visual responses to drifting gratings in retinal axonal boutons were robustly modulated by arousal level in a manner that varied across stimulus dimensions and across functionally distinct subsets of boutons. At low and intermediate spatial frequencies, the majority of boutons were suppressed by arousal. In contrast, at high spatial frequencies, boutons tuned to regions of visual space ahead of the mouse showed enhancement of responses. Arousal-related modulation also varied with a bouton's preference for luminance changes and direction or axis of motion, with greater response suppression in boutons tuned to luminance decrements versus increments, and in boutons preferring motion along directions or axes of optic flow. Together, our results suggest that differential modulation of distinct visual information channels by arousal state occurs at very early stages of visual processing, before the information is transmitted to neurons in visual thalamus. Such early filtering may provide an efficient means of optimizing central visual processing and perception across behavioral contexts.
Assuntos
Nível de Alerta/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Ganglionares da Retina/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Axônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Retina/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologiaRESUMO
The thalamocortical synapse of the visual system has been central to our understanding of sensory computations in the cortex. Although we have a fair understanding of the functional properties of the pre and post-synaptic populations, little is known about their synaptic properties, particularly in vivo. We used simultaneous recordings in LGN and V1 in cat in vivo to characterize the dynamic properties of thalamocortical synaptic transmission in monosynaptically connected LGN-V1 neurons. We found that thalamocortical synapses in vivo are unreliable, highly variable and exhibit short-term plasticity. Using biologically constrained models, we found that variable and unreliable synapses serve to increase cortical firing by means of increasing membrane fluctuations, similar to high conductance states. Thus, synaptic variability and unreliability, rather than acting as system noise, do serve a computational function. Our characterization of LGN-V1 synaptic properties constrains existing mathematical models, and mechanistic hypotheses, of a fundamental circuit in computational neuroscience.
Assuntos
Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Animais , Gatos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios , Masculino , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Campos VisuaisRESUMO
Nearly all of the information that reaches the primary visual cortex (V1) of the brain passes from the retina through the lateral geniculate nucleus (LGN) of the thalamus. Although the LGN's role in relaying feedforward signals from the retina to the cortex is well understood [1, 2], the functional role of the extensive feedback it receives from the cortex has remained elusive [3-6]. Here, we investigated whether corticothalamic feedback may contribute to perceptual processing in the LGN in a manner that is distinct from top-down effects of attention [7-10]. We used high-resolution fMRI at 7 Tesla to simultaneously measure responses to orientation-defined figures in the human LGN and V1. We found robust enhancement of perceptual figures throughout the early visual system, which could be distinguished from the effects of covert spatial attention [11-13]. In a second experiment, we demonstrated that figure enhancement occurred in the LGN even when the figure and surrounding background were presented dichoptically (i.e., to different eyes). As binocular integration primarily occurs in V1 [14, 15], these results implicate a mechanism of automatic, contextually sensitive feedback from binocular visual cortex underlying figure-ground modulation in the LGN. Our findings elucidate the functional mechanisms of this core function of the visual system [16-18], which allows people to segment and detect meaningful figures in complex visual environments. The involvement of the LGN in this rich, contextually informed visual processing-despite showing minimal feedforward selectivity for visual features [19, 20]-underscores the role of recurrent processing at the earliest stages of visual processing.
Assuntos
Corpos Geniculados/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto JovemRESUMO
Sensory experience influences the establishment of neural connectivity through molecular mechanisms that remain unclear. Here, we employ single-nucleus RNA sequencing to investigate the contribution of sensory-driven gene expression to synaptic refinement in the dorsal lateral geniculate nucleus of the thalamus, a region of the brain that processes visual information. We find that visual experience induces the expression of the cytokine receptor Fn14 in excitatory thalamocortical neurons. By combining electrophysiological and structural techniques, we show that Fn14 is dispensable for early phases of refinement mediated by spontaneous activity but that Fn14 is essential for refinement during a later, experience-dependent period of development. Refinement deficits in mice lacking Fn14 are associated with functionally weaker and structurally smaller retinogeniculate inputs, indicating that Fn14 mediates both functional and anatomical rearrangements in response to sensory experience. These findings identify Fn14 as a molecular link between sensory-driven gene expression and vision-sensitive refinement in the brain.
Assuntos
Corpos Geniculados/metabolismo , Células Ganglionares da Retina/metabolismo , Receptor de TWEAK/biossíntese , Percepção Visual/fisiologia , Animais , Feminino , Expressão Gênica , Corpos Geniculados/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Trato Óptico/crescimento & desenvolvimento , Trato Óptico/metabolismo , Retina/metabolismo , Receptor de TWEAK/genéticaRESUMO
Neural circuits in sensory pathways develop through a general strategy of overproduction of synapses followed by activity-driven pruning to fine-tune connectivity for optimal function. The early visual pathway, consisting of the retina â visual thalamus â primary visual cortex, has served for decades as a powerful model system for probing the mechanisms and logic of this process. In addition to these feedforward projections, the early visual pathway also includes a substantial feedback component in the form of corticothalamic projections from the deepest layer of primary visual cortex. The role of this feedback in visual processing has been studied extensively in mature animals, yet historically, its role in development has received comparatively little attention. Recent technological advances allowing for selective manipulation of neural activity in development led to the uncovering of a role for feedback in guiding the refinement of the forward projection from retina to visual thalamus. Here we discuss the implications of feedback exerting influence on the development of sensory pathways. We propose several possible advantages to constructing neural circuits with top-down regulation, and discuss the potential significance of this finding for certain neurologic disorders.
RESUMO
Anterior cingulate cortex (ACC) is known to participate in numerous brain functions, such as memory storage, emotion, attention, as well as perception of acute and chronic pain. ACC-dependent brain functions often rely on ACC processing of various forms of environmental information. To understand the neural basis of ACC functions, previous studies have investigated ACC responses to environmental stimulation, particularly complex sensory stimuli as well as award and aversive stimuli, but this issue remains to be further clarified. Here, by performing whole-cell recording in vivo in anaesthetized adult rats, we examined membrane-potential (MP) responses of layer II/III ACC neurons that were evoked by a brief flash of visual stimulation and pain-related electrical stimulation delivered to hind paws. We found that ~54 and ~81 % ACC neurons exhibited excitatory MP responses, subthreshold or suprathreshold, to the visual stimulus and the electrical stimulus, respectively, with no cell showing inhibitory MP responses. We further found that the visually evoked ACC response could be greatly diminished by local lidocaine infusion in the visual thalamus, and only their temporal patterns but not amplitudes could be changed by large-scale visual cortical lesions. Our in vivo whole-cell recording data characterized in ACC neurons a visually evoked response, which was largely dependent on the visual thalamus but not visual cortex, as well as a noxious electrical stimulus-evoked response. These findings may provide potential mechanisms that are used for ACC functions on the basis of sensory information processing.
Assuntos
Potenciais Evocados/fisiologia , Giro do Cíngulo/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Animais , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Lidocaína/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Tálamo/efeitos dos fármacos , Tálamo/fisiologia , Fatores de Tempo , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologiaRESUMO
A fundamental question in vision neuroscience is how parallel processing of Retinal Ganglion Cell (RGC) signals is integrated at the level of the visual thalamus. It is well-known that parallel ON-OFF pathways generate output signals from the retina that are conveyed to the dorsal lateral geniculate nucleus (dLGN). However, it is unclear how these signals distribute onto thalamic cells and how these two pathways interact. Here, by electrophysiological recordings and c-Fos expression analysis, we characterized the effects of pharmacological manipulations of the retinal circuit aimed at inducing either a selective activation of a single pathway, OFF RGCs [intravitreal L-(+)-2-Amino-4-phosphonobutyric, L-AP4] or an unregulated activity of all classes of RGCs (intravitreal 4-Aminopyridine, 4-AP). In in vivo experiments, the analysis of c-Fos expression in the dLGN showed that these two manipulations recruited active cells from the same area, the lateral edge of the dLGN. Despite this similarity, the unregulated co-activation of both ON and OFF pathways by 4-AP yielded a much stronger recruitment of GABAergic interneurons in the dLGN when compared to L-AP4 pure OFF activation. The increased activation of an inhibitory thalamic network by a high level of unregulated discharge of ON and OFF RGCs might suggest that cross-inhibitory pathways between opposing visual channels are presumably replicated at multiple levels in the visual pathway, thus increasing the filtering ability for non-informative or noisy visual signals.