Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228258

RESUMO

In the current study, eco-structured and efficient removal of the veterinary fluoroquinolone antibiotic sarafloxacin (SARA) from wastewater has been explored. The adsorptive power of four agro-wastes (AWs) derived from pistachio nutshells (PNS) and Aloe vera leaves (AV) as well as the multi-walled carbon nanotubes (MWCNTs) has been assessed. Adsorbent derived from raw pistachio nutshells (RPNS) was the most efficient among the four tested AWs (%removal '%R' = 82.39%), while MWCNTs showed the best adsorptive power amongst the five adsorbents (%R = 96.20%). Plackett-Burman design (PBD) was used to optimize the adsorption process. Two responses ('%R' and adsorption capacity 'qe') were optimized as a function of four variables (pH, adsorbent dose 'AD' (dose of RPNS and MWCNTs), adsorbate concentration [SARA] and contact time 'CT'). The effect of pH was similar for both RPNS and MWCNTs. Morphological and textural characterization of the tested adsorbents was carried out using FT-IR spectroscopy, SEM and BET analyses. Conversion of waste-derived materials into carbonaceous material was investigated by Raman spectroscopy. Equilibrium studies showed that Freundlich isotherm is the most suitable isotherm to describe the adsorption of SARA onto RPNS. Kinetics' investigation shows that the adsorption of SARA onto RPNS follows a pseudo-second order (PSO) model.


Assuntos
Agricultura , Ciprofloxacina/análogos & derivados , Nanotubos de Carbono/química , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Análise de Variância , Ciprofloxacina/química , Ciprofloxacina/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Nanotubos de Carbono/ultraestrutura , Pistacia/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termogravimetria
2.
Polymers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267748

RESUMO

In this study, the applicability of two bacteria-based healing agents (e.g., poly-lactic acid and polyhydroxyalkanoate) in blast furnace slag cement (BFSC) mortar has been assessed. An experimental campaign on the functional properties, self-healing capacity, freezing-thawing and carbonation resistance has been conducted in comparison with plain mortar (Ctrl). Due to the relatively low alkalinity of the mixture, the addition of poly-lactic acid healing agents (PLA) caused coarsening of the micro-structure, decrease of strength and did not improve the self-healing capacity of the material. Among other consequences, the mass loss due to the freezing-thawing of PLA specimens was about 5% higher than that of the Ctrl specimens. On the contrary, no detrimental effect of the mortar functional properties was measured when polyhydroxyalkanoate healing agents (AKD) were added. The self-healing capacity of AKD specimens was higher than that of the Ctrl specimens, reaching a maximum healed crack width of 559 µm after 168 days of self-healing, while it was 439 µm for the Ctrl specimens and 385 µm for PLA specimens. The air void content of the AKD mixture was 0.9% higher than that of the Ctrl, increasing its resistance against freezing-thawing cycles. This study aims to confirm the potential applicability of AKD particles as self-healing agents in low-alkaline cementitious mixtures.

3.
Eco Environ Health ; 1(2): 86-104, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38075525

RESUMO

Water pollution is a major concern for public health and a sustainable future. It is urgent to purify wastewater with effective methods to ensure a clean water supply. Most wastewater remediation techniques rely heavily on functional materials, and cost-effective materials are thus highly favorable. Of great environmental and economic significance, developing waste-derived materials for wastewater remediation has undergone explosive growth recently. Herein, the applications of waste (e.g., biowastes, electronic wastes, and industrial wastes)-derived materials for wastewater purification are comprehensively reviewed. Sophisticated strategies for turning wastes into functional materials are firstly summarized, including pyrolysis and combustion, hydrothermal synthesis, sol-gel method, co-precipitation, and ball milling. Moreover, critical experimental parameters within different design strategies are discussed. Afterward, recent applications of waste-derived functional materials in adsorption, photocatalytic degradation, electrochemical treatment, and advanced oxidation processes (AOPs) are analyzed. We mainly focus on the development of efficient functional materials via regulating the internal and external characteristics of waste-derived materials, and the material's property-performance correlation is also emphasized. Finally, the key future perspectives in the field of waste-derived materials-driven water remediation are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA