Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474597

RESUMO

Rhodium-catalyzed cycloaddition reactions are a powerful tool for the construction of polycyclic compounds. Combined experimental and DFT studies were used to investigate the temperature-controlled chemoselectivity of cationic rhodium-catalyzed intramolecular cycloaddition reactions of ene-vinylidenecyclopropanes. After a series of mechanistic studies, it was found that trace amounts of water in the reaction system play an important role in generating the product with endo double bond located on a five-membered ring and revealed that trace amounts of water in the reaction system, including the rhodium catalyst, substrate and solvent, were sufficient to promote the formation of the product with endo double bond located on a five-membered ring, and additional water could not further accelerate the reaction. DFT calculation results show that the addition of water indeed significantly lowers the energy barrier of the proton transfer step, making the formation of the product with endo double bond located on a five-membered ring more likely to occur and confirming the rationality of water-assisted proton transfer occurring in the selective access to the product with endo double bond located on a five-membered ring.

2.
Chem Cent J ; 10: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073411

RESUMO

BACKGROUND: Cyanoform is long known as one of the strongest acid. Cyanoform is only stable below -40 °C. The issue of the stability and tautomeric equilibria of cyanoform (CF) are investigated at the DFT and MP2 levels of theory. The present work presents a detailed study of structural tautomer interconversion in three different media, namely, in the gas phase, in a solvent continuum, and in a microhydrated environment where the first solvation layer is described explicitly by one or two water molecule. In all cases, the transition state has been localized and identified. Proton affinities, deprotonation energies and the Raman spectra are reported analyzed and discussed. RESULTS: The 1 tautomer of cyanoform is shown to be more stable than 2 form by only 1.8 and 14.1 kcal/mol in the gas phase using B3LYP/6-311 ++G** and MP2/6-311 ++G** level of theory, respectively. This energy difference is reduced to 0.7 and 13.4 kcal/mol in water as a solvent using CPCM model using B3LYP/6-311 ++G** and MP2/6-311 ++G** level of theory, respectively. The potential energy barrier for this proton transfer process in the gas phase is 77.5 kcal/mol at MP2/6-311 ++G** level of theory. NBO analysis, analysis of the electrostatic potential (ESP) of the charge distribution, donor-acceptor interactions and charge transfer interactions in 1 and 2 are performed and discussed. CONCLUSIONS: Gross solvent continuum effects have but negligible effect on this barrier. Inclusion of one and two water molecules to describe explicitly the first solvation layer, within the supermolecule model, lowers the barrier considerably (29.0 and 7.6 kcal/mol, respectively). Natural bond orbital (NBO) analysis indicated that the stability of the cyanoform arising from charge delocalization. A very good agreement between experimental and theoretical data has been found at MP2/6-311 ++G** for the energies. On other hand, B3LYP/6-311 ++G** level of theory has good agreement with experimental spectra for CF compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA