RESUMO
Hypertension has emerged as a leading cause of age-related cognitive impairment. Long known to be associated with dementia caused by vascular factors, hypertension has more recently been linked also to Alzheimer disease-the major cause of dementia in older people. Thus, although midlife hypertension is a risk factor for late-life dementia, hypertension may also promote the neurodegenerative pathology underlying Alzheimer disease. The mechanistic bases of these harmful effects remain to be established. Hypertension is well known to alter in the structure and function of cerebral blood vessels, but how these cerebrovascular effects lead to cognitive impairment and promote Alzheimer disease pathology is not well understood. Furthermore, critical questions also concern whether treatment of hypertension prevents cognitive impairment, the blood pressure threshold for treatment, and the antihypertensive agents to be used. Recent advances in neurovascular biology, epidemiology, brain imaging, and biomarker development have started to provide new insights into these critical issues. In this review, we will examine the progress made to date, and, after a critical evaluation of the evidence, we will highlight questions still outstanding and seek to provide a path forward for future studies.
Assuntos
Pressão Sanguínea , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Transtornos Cerebrovasculares/epidemiologia , Cognição , Disfunção Cognitiva/epidemiologia , Hipertensão/epidemiologia , Acoplamento Neurovascular , Animais , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cerebrovasculares/prevenção & controle , Transtornos Cerebrovasculares/psicologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/psicologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Hipertensão/psicologia , Acoplamento Neurovascular/efeitos dos fármacos , Prognóstico , Medição de Risco , Fatores de RiscoRESUMO
Cerebral white matter pathology is a common CNS manifestation of Fabry disease, visualized as white matter hyperintensities on MRI in 42-81% of patients. Diffusion tensor imaging (DTI) MRI is a sensitive technique to quantify microstructural damage within the white matter with potential value as a disease biomarker. We evaluated the pattern of DTI abnormalities in Fabry disease, and their correlations with cognitive impairment, mood, anxiety, disease severity and plasma lyso-Gb3 levels in 31 patients with genetically proven Fabry disease and 19 age-matched healthy control subjects. We obtained average values of fractional anisotropy and mean diffusivity within the white matter and performed voxelwise analysis with tract-based spatial statistics. Using a standardized neuropsychological test battery, we assessed processing speed, executive function, anxiety, depression and disease severity. The mean age (% male) was 44.1 (45%) for patients with Fabry disease and 37.4 (53%) for the healthy control group. In patients with Fabry disease, compared to healthy controls the mean average white matter fractional anisotropy was lower in [0.423 (standard deviation, SD 0.023) versus 0.446 (SD 0.016), P = 0.002] while mean average white matter mean diffusivity was higher (749 × 10-6 mm2/s (SD 32 × 10-6) versus 720 × 10-6 mm2/s (SD 21 × 10-6), P = 0.004]. Voxelwise statistics showed that the diffusion abnormalities for both fractional anisotropy and mean diffusivity were anatomically widespread. A lesion probability map showed that white matter hyperintensities also had a wide anatomical distribution with a predilection for the posterior centrum semiovale. However, diffusion abnormalities in Fabry disease were not restricted to lesional tissue; compared to healthy controls, the normal appearing white matter in patients with Fabry disease had reduced fractional anisotropy [0.422 (SD 0.022) versus 0.443 (SD 0.017) P = 0.003] and increased mean diffusivity [747 × 10-6 mm2/s (SD 26 × 10-6) versus 723 × 10-6 mm2/s (SD 22 × 10-6), P = 0.008]. Within patients, average white matter fractional anisotropy and white matter lesion volume showed statistically significant correlations with Digit Symbol Coding Test score (r = 0.558, P = 0.001; and r = -0.633, P ≤ 0.001, respectively). Average white matter fractional anisotropy correlated with the overall Mainz Severity Score Index (r = -0.661, P ≤ 0.001), while average white matter mean diffusivity showed a strong correlation with plasma lyso-Gb3 levels (r = 0.559, P = 0.001). Our findings using DTI confirm widespread areas of microstructural white matter disruption in Fabry disease, extending beyond white matter hyperintensities seen on conventional MRI. Moreover, diffusion measures show strong correlations with cognition (processing speed), clinical disease severity and a putative plasma biomarker of disease activity, making them promising quantitative biomarkers for monitoring Fabry disease severity and progression.
Assuntos
Doença de Fabry/diagnóstico por imagem , Doença de Fabry/psicologia , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Ansiedade/etiologia , Ansiedade/psicologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Depressão/etiologia , Depressão/psicologia , Imagem de Tensor de Difusão , Função Executiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/etiologia , Transtornos do Humor/psicologia , Testes Neuropsicológicos , Triexosilceramidas/sangue , Adulto JovemRESUMO
AIMS: Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy remain unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. METHODS: Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one nonatrophied region within the language dominant hemisphere of each PPA case. Nonatrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. RESULTS: Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to nonatrophied regions in the language dominant hemisphere (P < 0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (P < 0.05). CONCLUSIONS: White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy.
Assuntos
Doença de Alzheimer , Afasia Primária Progressiva , Córtex Cerebral , Demência Frontotemporal , Substância Cinzenta , Microglia/imunologia , Substância Branca , Idoso , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Afasia Primária Progressiva/imunologia , Afasia Primária Progressiva/patologia , Atrofia/imunologia , Atrofia/patologia , Córtex Cerebral/imunologia , Córtex Cerebral/patologia , Feminino , Demência Frontotemporal/imunologia , Demência Frontotemporal/patologia , Substância Cinzenta/imunologia , Substância Cinzenta/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/imunologia , Substância Branca/patologiaRESUMO
We investigated the relationship between retinal layers and normal-appearing white matter (WM) integrity in the brain of patients with relapsing-remitting multiple sclerosis (MS), using a combined diffusion tensor imaging and high resolution optical coherence tomography approach. Fifty patients and 62 controls were recruited. The patients were divided into two groups according to presence (n = 18) or absence (n = 32) of optic neuritis. Diffusion tensor data were analyzed with a voxel-wise whole brain analysis of diffusion metrics in WM with tract-based spatial statistics. Thickness measurements were obtained for each individual retinal layer. Partial correlation and multivariate regression analyses were performed, assessing the association between individual retinal layers and diffusion metrics across all groups. Region-based analysis was performed, by focusing on tracts associated with the visual system. Receiver operating characteristic (ROC) curves were computed to compare the biomarker potential for the diagnosis of MS, using the thickness of each retinal layer and diffusion metrics. In patients without optic neuritis, both ganglion cell layer (GCL) and inner plexiform layer thickness correlated with the diffusion metrics within and outside the visual system. GCL thickness was a significant predictor of diffusion metrics in the whole WM skeleton, unlike other layers. No association was observed for either controls or patients with a history of optic neuritis. ROC analysis showed that the biomarker potential for the diagnosis of MS based on the GCL was high when compared to other layers. We conclude that GCL integrity is a predictor of whole-brain WM disruption in MS patients without optic neuritis.
Assuntos
Imagem de Tensor de Difusão , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Retina/diagnóstico por imagem , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Substância Branca/diagnóstico por imagem , Adulto , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Esclerose Múltipla Recidivante-Remitente/complicações , Neurite Óptica/complicações , Neurite Óptica/diagnóstico por imagem , Tamanho do Órgão , Retina/patologia , Células Ganglionares da Retina/patologiaRESUMO
Chronic cerebrovascular hypoperfusion results in vascular dementia and increases predisposition to lacunar infarcts. However, there are no suitable animal models. In this study, we developed a novel model for chronic irreversible cerebral hypoperfusion in mice. Briefly, an ameroid constrictor was placed on the right carotid artery to gradually occlude the vessel, while a microcoil was placed on the left carotid artery to prevent compensation of the blood flow. This procedure resulted in a gradual hypoperfusion developing over a period of 34 days with no cerebral blood flow recovery. Histological analysis of the brain revealed neuronal and axonal degeneration as well as necrotic lesions. The most severely affected regions were located in the hippocampus and the corpus callosum. Overall, our paradigm is a viable model to study brain pathology resulting from gradual cerebrovascular hypoperfusion.
Assuntos
Artéria Carótida Primitiva/patologia , Estenose das Carótidas/patologia , Circulação Cerebrovascular/fisiologia , Demência Vascular/patologia , Modelos Animais de Doenças , Animais , Artéria Carótida Primitiva/fisiopatologia , Estenose das Carótidas/complicações , Estenose das Carótidas/fisiopatologia , Demência Vascular/etiologia , Demência Vascular/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Ermin is an actin-binding protein found almost exclusively in the central nervous system (CNS) as a component of myelin sheaths. Although Ermin has been predicted to play a role in the formation and stability of myelin sheaths, this has not been directly examined in vivo. Here, we show that Ermin is essential for myelin sheath integrity and normal saltatory conduction. Loss of Ermin in mice caused de-compacted and fragmented myelin sheaths and led to slower conduction along with progressive neurological deficits. RNA sequencing of the corpus callosum, the largest white matter structure in the CNS, pointed to inflammatory activation in aged Ermin-deficient mice, which was corroborated by increased levels of microgliosis and astrogliosis. The inflammatory milieu and myelin abnormalities were further associated with increased susceptibility to immune-mediated demyelination insult in Ermin knockout mice. Supporting a possible role of Ermin deficiency in inflammatory white matter disorders, a rare inactivating mutation in the ERMN gene was identified in multiple sclerosis patients. Our findings demonstrate a critical role for Ermin in maintaining myelin integrity. Given its near-exclusive expression in myelinating oligodendrocytes, Ermin deficiency represents a compelling "inside-out" model of inflammatory dysmyelination and may offer a new paradigm for the development of myelin stability-targeted therapies.
Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Camundongos , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismoRESUMO
Complex cortical malformations (CCMs), such as hemimegalencephaly and polymicrogyria, are associated with drug-resistant epilepsy and developmental impairment. They share certain neuropathological characteristics including mammalian target of rapamycin (mTOR) activation and an atypical number of white matter neurons. To get a better understanding of the pathobiology of the lesion architecture, we investigated the role of neurite outgrowth inhibitor A (NogoA), a known regulator of neuronal migration. Epilepsy surgery specimens from 16 CCM patients were analyzed and compared with sections of focal cortical dysplasia IIB (FCD IIB, n = 22), tuberous sclerosis complex (TSC, n = 8) as well as healthy controls (n = 15). Immunohistochemistry was used to characterize NogoA, myelination, and mTOR signaling. Digital slides were evaluated automatically with ImageJ. NogoA staining showed a significantly higher expression within the white matter of CCM and FCD IIB, whereas cortical tubers presented levels similar to controls. Further analysis of possible associations of NogoA with other factors revealed a positive correlation with mTOR and seizure frequency. To identify the main expressing NogoA cell type, double staining revealed dysmorphic neuronal white matter cells. Increased NogoA expression is associated with profound inhibition of neuritic sprouting and therefore contributes to a decrease in neuronal network complexity in CCM patients.
Assuntos
Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Proteínas Nogo/biossíntese , Regulação para Cima/fisiologia , Substância Branca/metabolismo , Substância Branca/patologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , MasculinoRESUMO
OBJECTIVE: Phenylketonuria (PKU) is an autosomal recessive disorder whereby deficiencies in phenylalanine metabolism cause progressive neurological dysfunction. Managing PKU is challenging, with disease monitoring focussed on short-term phenylalanine control rather than measures of neuronal damage. Conventional imaging lacks sensitivity, however diffusion kurtosis imaging (DKI), a new MRI method may reveal subclinical white matter structural changes in PKU. METHODS: This cohort study involved adults with PKU recruited during routine clinical care. MRI, neurocognitive assessment and historical phenylalanine (Phe) levels were collected. A hypothesis-generating case study comparing diet-compliant and non-compliant siblings confirmed that DKI metrics are sensitive to dietary adherence and prompted a candidate metric (Krad/KFA ratio). We then tested this metric in a Replication cohort (PKU = 20; controls = 43). RESULTS: Both siblings scored outside the range of controls for all DKI-based metrics, with severe changes in the periventricular white matter and a gradient of severity toward the cortex. Krad/KFA provided clear separation by diagnosis in the Replication cohort (p < 0.001 in periventricular, deep and pericortical compartments). The ratio also correlated negatively with attention (r = -0.51 & -0.50, p < 0.05) and positively with 3-year mean Phe (r = 0.45 & 0.58, p < 0.01). CONCLUSION: DKI reveals regionally-specific, progressive abnormalities of brain diffusion characteristics in PKU, even in the absence of conspicuous clinical signs or abnormalities on conventional MRI. A DKI-based marker derived from these scores (Krad/KFA ratio) was sensitive to cognitive impairment and PKU control over the medium term and may provide a meaningful subclinical biomarker of end-organ damage.
Assuntos
Fenilcetonúrias , Substância Branca , Adulto , Encéfalo , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Fenilcetonúrias/diagnóstico por imagem , Substância Branca/diagnóstico por imagemRESUMO
White matter pathology likely contributes to the pathogenesis of bipolar disorder (BD). Most studies of white matter in BD have used diffusion tensor imaging (DTI), but the advent of more advanced multi-shell diffusion MRI imaging offers the possibility to investigate other aspects of white matter microstructure. Diffusion kurtosis imaging (DKI) extends the DTI model and provides additional measures related to diffusion restriction. Here, we investigated white matter in BD by applying whole-brain voxel-based analysis (VBA) and a network-based connectivity approach using constrained spherical deconvolution tractography to assess differences in DKI and DTI metrics between BD (n = 25) and controls (n = 24). The VBA showed lower mean kurtosis in the corona radiata and posterior association fibers in BD. Regional differences in connectivity were indicated by lower mean kurtosis and kurtosis anisotropy in streamlines traversing the temporal and occipital lobes, and lower mean axial kurtosis in the right cerebellar, thalamo-subcortical pathways in BD. Significant differences were not seen in DTI metrics following FDR-correction. The DKI findings indicate altered connectivity across cortical, subcortical and cerebellar areas in BD. DKI is sensitive to different microstructural properties and is a useful complementary technique to DTI to more fully investigate white matter in BD.
Assuntos
Transtorno Bipolar , Substância Branca , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
We have previously reported long-term changes in the brains of non-concussed varsity rugby players using magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and functional magnetic imaging (fMRI). Others have reported cognitive deficits in contact sport athletes that have not met the diagnostic criteria for concussion. These results suggest that repetitive mild traumatic brain injuries (rmTBIs) that are not severe enough to meet the diagnostic threshold for concussion, produce long-term consequences. We sought to characterize the neuroimaging, cognitive, pathological and metabolomic changes in a mouse model of rmTBI. Using a closed-skull model of mTBI that when scaled to human leads to rotational and linear accelerations far below what has been reported for sports concussion athletes, we found that 5 daily mTBIs triggered two temporally distinct types of pathological changes. First, during the first days and weeks after injury, the rmTBI produced diffuse axonal injury, a transient inflammatory response and changes in diffusion tensor imaging (DTI) that resolved with time. Second, the rmTBI led to pathological changes that were evident months after the injury including: changes in magnetic resonance spectroscopy (MRS), altered levels of synaptic proteins, behavioural deficits in attention and spatial memory, accumulations of pathologically phosphorylated tau, altered blood metabolomic profiles and white matter ultrastructural abnormalities. These results indicate that exceedingly mild rmTBI, in mice, triggers processes with pathological consequences observable months after the initial injury.
Assuntos
Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Diffuse white matter injury (dWMI) is a major cause of morbidity in the extremely preterm born infant leading to life-long neurological impairments, including deficits in cognitive, motor, sensory, psychological, and behavioral functioning. At present, no treatment options are clinically available to combat dWMI and therefore exploration of novel strategies is urgently needed. In recent years, the pathophysiology underlying dWMI has slowly started to be unraveled, pointing towards the disturbed maturation of oligodendrocytes (OLs) as a key mechanism. Immature OL precursor cells in the developing brain are believed to be highly sensitive to perinatal inflammation and cerebral oxygen fluctuations, leading to impaired OL differentiation and eventually myelination failure. OL lineage development under normal and pathological circumstances and the process of (re)myelination have been studied extensively over the years, often in the context of other adult and pediatric white matter pathologies such as stroke and multiple sclerosis (MS). Various studies have proposed stem cell-based therapeutic strategies to boost white matter regeneration as a potential strategy against a wide range of neurological diseases. In this review we will discuss experimental studies focusing on mesenchymal stem cell (MSC) therapy to reduce white matter injury (WMI) in multiple adult and neonatal neurological diseases. What lessons have been learned from these previous studies and how can we translate this knowledge to application of MSCs for the injured white matter in the preterm infant? A perspective on the current state of stem cell therapy will be given and we will discuss different important considerations of MSCs including cellular sources, timing of treatment and administration routes. Furthermore, we reflect on optimization strategies that could potentially reinforce stem cell therapy, including preconditioning and genetic engineering of stem cells or using cell-free stem cell products, to optimize cell-based strategy for vulnerable preterm infants in the near future.
RESUMO
Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and the oligodendrocytes. Astrocytes have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and gray matter astrocytes, how astrocytes support myelination, how their dysfunction in pathological states contributes to myelin pathologies and how astrocytes may facilitate remyelination. We discuss how astrocytes in the white matter are specialized to promote myelination and myelin maintenance by clearance of extracellular ions and neurotransmitters and by secretion of pro-myelinating factors. Additionally, astrocyte-oligodendrocyte coupling via gap junctions is crucial for both myelin formation and maintenance, due to K(+) buffering and possibly metabolic support for oligodendrocytes via the panglial syncytium. Dysfunctional astrocytes aberrantly affect oligodendrocytes, as exemplified by a number of leukodystrophies in which astrocytic pathology is known as the direct cause of myelin pathology. Conversely, in primary demyelinating diseases, such as multiple sclerosis, astrocytes may facilitate remyelination. We suggest that specific manipulation of astrocytes could help prevent myelin pathologies and successfully restore myelin sheaths after demyelination.