Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.248
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(20): 5122-5137.e17, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534446

RESUMO

Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as mating unfolds in a sequence of component behaviors, the brain operates similarly between instances of each component but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed but change with behavioral dynamics. From individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions in their natural context.


Assuntos
Encéfalo/fisiologia , Caenorhabditis elegans/fisiologia , Sensação/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Mapeamento Encefálico , Copulação/fisiologia , Corte , Bases de Dados como Assunto , Retroalimentação , Feminino , Masculino , Modelos Biológicos , Movimento , Neurônios/fisiologia , Descanso , Processamento de Sinais Assistido por Computador , Sinapses/fisiologia , Vulva/fisiologia
2.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31955849

RESUMO

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Assuntos
Cerebelo/fisiologia , Tomada de Decisões/fisiologia , Tempo de Reação/fisiologia , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/fisiologia , Mapeamento Encefálico/métodos , Cérebro/fisiologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Objetivos , Habenula/fisiologia , Temperatura Alta , Larva/fisiologia , Atividade Motora/fisiologia , Movimento , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Rombencéfalo/fisiologia
3.
Cell ; 177(2): 478-491.e20, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929901

RESUMO

Genomic studies have identified hundreds of candidate genes near loci associated with risk for schizophrenia. To define candidates and their functions, we mutated zebrafish orthologs of 132 human schizophrenia-associated genes. We created a phenotype atlas consisting of whole-brain activity maps, brain structural differences, and profiles of behavioral abnormalities. Phenotypes were diverse but specific, including altered forebrain development and decreased prepulse inhibition. Exploration of these datasets identified promising candidates in more than 10 gene-rich regions, including the magnesium transporter cnnm2 and the translational repressor gigyf2, and revealed shared anatomical sites of activity differences, including the pallium, hypothalamus, and tectum. Single-cell RNA sequencing uncovered an essential role for the understudied transcription factor znf536 in the development of forebrain neurons implicated in social behavior and stress. This phenotypic landscape of schizophrenia-associated genes prioritizes more than 30 candidates for further study and provides hypotheses to bridge the divide between genetic association and biological mechanism.


Assuntos
Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Animais , Encéfalo , Córtex Cerebral , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra/genética
4.
Cell ; 179(1): 268-281.e13, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31495573

RESUMO

Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.


Assuntos
Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Neuritos/fisiologia , Tratos Piramidais/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Software , Transfecção
5.
Cell ; 170(2): 393-406.e28, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28709004

RESUMO

Assigning behavioral functions to neural structures has long been a central goal in neuroscience and is a necessary first step toward a circuit-level understanding of how the brain generates behavior. Here, we map the neural substrates of locomotion and social behaviors for Drosophila melanogaster using automated machine-vision and machine-learning techniques. From videos of 400,000 flies, we quantified the behavioral effects of activating 2,204 genetically targeted populations of neurons. We combined a novel quantification of anatomy with our behavioral analysis to create brain-behavior correlation maps, which are shared as browsable web pages and interactive software. Based on these maps, we generated hypotheses of regions of the brain causally related to sensory processing, locomotor control, courtship, aggression, and sleep. Our maps directly specify genetic tools to target these regions, which we used to identify a small population of neurons with a role in the control of walking.


Assuntos
Mapeamento Encefálico/métodos , Drosophila melanogaster/fisiologia , Animais , Comportamento Animal , Feminino , Locomoção , Masculino , Software
6.
Annu Rev Neurosci ; 45: 491-513, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803584

RESUMO

Functional ultrasound (fUS) is a neuroimaging method that uses ultrasound to track changes in cerebral blood volume as an indirect readout of neuronal activity at high spatiotemporal resolution. fUS is capable of imaging head-fixed or freely behaving rodents and of producing volumetric images of the entire mouse brain. It has been applied to many species, including primates and humans. Now that fUS is reaching maturity, it is being adopted by the neuroscience community. However, the nature of the fUS signal and the different implementations of fUS are not necessarily accessible to nonspecialists. This review aims to introduce these ultrasound concepts to all neuroscientists. We explain the physical basis of the fUS signal and the principles of the method, present the state of the art of its hardware implementation, and give concrete examples of current applications in neuroscience. Finally, we suggest areas for improvement during the next few years.


Assuntos
Encéfalo , Neuroimagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Camundongos
7.
Proc Natl Acad Sci U S A ; 121(32): e2320250121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074275

RESUMO

High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single cells. However, conventional fluorescent protein (FP) modifications used to discriminate single cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and nondeleterious nuclear localization signal (NLS) tag strategy, called "Arginine-rich NLS" (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes and in response to both local and systemic brain-wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances machine learning-automated segmentation of single cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single cells at scale and paired with behavioral procedures.


Assuntos
Arginina , Sinais de Localização Nuclear , Análise de Célula Única , Animais , Sinais de Localização Nuclear/metabolismo , Arginina/metabolismo , Análise de Célula Única/métodos , Camundongos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Núcleo Celular/metabolismo , Microscopia de Fluorescência/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído
8.
Proc Natl Acad Sci U S A ; 121(3): e2312913120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190526

RESUMO

General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.


Assuntos
Anestésicos , Caracteres Sexuais , Humanos , Feminino , Masculino , Animais , Camundongos , Anestésicos/farmacologia , Anestesia Geral , Testosterona/farmacologia , Inconsciência
9.
Proc Natl Acad Sci U S A ; 120(14): e2216231120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976764

RESUMO

Histamine is a conserved neuromodulator in mammalian brains and critically involved in many physiological functions. Understanding the precise structure of the histaminergic network is the cornerstone in elucidating its function. Herein, using histidine decarboxylase (HDC)-CreERT2 mice and genetic labeling strategies, we reconstructed a whole-brain three dimensional (3D) structure of histaminergic neurons and their outputs at 0.32 × 0.32 × 2 µm3 pixel resolution with a cutting-edge fluorescence microoptical sectioning tomography system. We quantified the fluorescence density of all brain areas and found that histaminergic fiber density varied significantly among brain regions. The density of histaminergic fiber was positively correlated with the amount of histamine release induced by optogenetic stimulation or physiological aversive stimulation. Lastly, we reconstructed a fine morphological structure of 60 histaminergic neurons via sparse labeling and uncovered the largely heterogeneous projection pattern of individual histaminergic neurons. Collectively, this study reveals an unprecedented whole-brain quantitative analysis of histaminergic projections at the mesoscopic level, providing a foundation for future functional histaminergic study.


Assuntos
Encéfalo , Histamina , Camundongos , Animais , Encéfalo/metabolismo , Neurônios/metabolismo , Mapeamento Encefálico , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Mamíferos/metabolismo
10.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38918077

RESUMO

It is crucial to understand how anesthetics disrupt information transmission within the whole-brain network and its hub structure to gain insight into the network-level mechanisms underlying propofol-induced sedation. However, the influence of propofol on functional integration, segregation, and community structure of whole-brain networks were still unclear. We recruited 12 healthy subjects and acquired resting-state functional magnetic resonance imaging data during 5 different propofol-induced effect-site concentrations (CEs): 0, 0.5, 1.0, 1.5, and 2.0 µg/ml. We constructed whole-brain functional networks for each subject under different conditions and identify community structures. Subsequently, we calculated the global and local topological properties of whole-brain network to investigate the alterations in functional integration and segregation with deepening propofol sedation. Additionally, we assessed the alteration of key nodes within the whole-brain community structure at each effect-site concentrations level. We found that global participation was significantly increased at high effect-site concentrations, which was mediated by bilateral postcentral gyrus. Meanwhile, connector hubs appeared and were located in posterior cingulate cortex and precentral gyrus at high effect-site concentrations. Finally, nodal participation coefficients of connector hubs were closely associated to the level of sedation. These findings provide valuable insights into the relationship between increasing propofol dosage and enhanced functional interaction within the whole-brain networks.


Assuntos
Encéfalo , Hipnóticos e Sedativos , Imageamento por Ressonância Magnética , Propofol , Humanos , Propofol/farmacologia , Propofol/administração & dosagem , Masculino , Imageamento por Ressonância Magnética/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Feminino , Hipnóticos e Sedativos/farmacologia , Adulto Jovem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Anestésicos Intravenosos/farmacologia , Mapeamento Encefálico/métodos
11.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110411

RESUMO

Speech perception requires the binding of spatiotemporally disjoint auditory-visual cues. The corresponding brain network-level information processing can be characterized by two complementary mechanisms: functional segregation which refers to the localization of processing in either isolated or distributed modules across the brain, and integration which pertains to cooperation among relevant functional modules. Here, we demonstrate using functional magnetic resonance imaging recordings that subjective perceptual experience of multisensory speech stimuli, real and illusory, are represented in differential states of segregation-integration. We controlled the inter-subject variability of illusory/cross-modal perception parametrically, by introducing temporal lags in the incongruent auditory-visual articulations of speech sounds within the McGurk paradigm. The states of segregation-integration balance were captured using two alternative computational approaches. First, the module responsible for cross-modal binding of sensory signals defined as the perceptual binding network (PBN) was identified using standardized parametric statistical approaches and their temporal correlations with all other brain areas were computed. With increasing illusory perception, the majority of the nodes of PBN showed decreased cooperation with the rest of the brain, reflecting states of high segregation but reduced global integration. Second, using graph theoretic measures, the altered patterns of segregation-integration were cross-validated.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Percepção da Fala , Percepção Visual , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Adulto , Adulto Jovem , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico , Estimulação Acústica , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos , Ilusões/fisiologia , Vias Neurais/fisiologia , Percepção Auditiva/fisiologia
12.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38112602

RESUMO

Systemic infiltration is a hallmark of diffuse midline glioma pathogenesis, which can trigger distant disturbances in cortical structure. However, the existence and effects of these changes have been underexamined. This study aimed to investigate whole-brain cortical myelin and thickness alternations induced by diffuse midline glioma. High-resolution T1- and T2-weighted images were acquired from 90 patients with diffuse midline glioma with H3 K27-altered and 64 patients with wild-type and 86 healthy controls. Cortical thickness and myelin content was calculated using Human Connectome Project pipeline. Significant differences in cortical thickness and myelin content were detected among groups. Short-term survival prediction model was constructed using automated machine learning. Compared with healthy controls, diffuse midline glioma with H3 K27-altered patients showed significantly reduced cortical myelin in bilateral precentral gyrus, postcentral gyrus, insular, parahippocampal gyrus, fusiform gyrus, and cingulate gyrus, whereas diffuse midline glioma with H3 K27 wild-type patients exhibited well-preserved myelin content. Furtherly, when comparing diffuse midline glioma with H3 K27-altered and diffuse midline glioma with H3 K27 wild-type, the decreased cortical thickness in parietal and occipital regions along with demyelination in medial orbitofrontal cortex was observed in diffuse midline glioma with H3 K27-altered. Notably, a combination of cortical features and tumor radiomics allowed short-term survival prediction with accuracy 0.80 and AUC 0.84. These findings may aid clinicians in tailoring therapeutic approaches based on cortical characteristics, potentially enhancing the efficacy of current and future treatment modalities.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Histonas/genética , Glioma/diagnóstico por imagem , Bainha de Mielina , Encéfalo/patologia , Mutação
13.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642107

RESUMO

Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mutação , Estudos Retrospectivos
14.
Proc Natl Acad Sci U S A ; 119(45): e2209382119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36603188

RESUMO

Studies using rodent models have shown that relapse to drug or food seeking increases progressively during abstinence, a behavioral phenomenon termed "incubation of craving." Mechanistic studies of incubation of craving have focused on specific neurobiological targets within preselected brain areas. Recent methodological advances in whole-brain immunohistochemistry, clearing, and imaging now allow unbiased brain-wide cellular resolution mapping of regions and circuits engaged during learned behaviors. However, these whole-brain imaging approaches were developed for mouse brains, while incubation of drug craving has primarily been studied in rats, and incubation of food craving has not been demonstrated in mice. Here, we established a mouse model of incubation of palatable food craving and examined food reward seeking after 1, 15, and 60 abstinence days. We then used the neuronal activity marker Fos with intact-brain mapping procedures to identify corresponding patterns of brain-wide activation. Relapse to food seeking was significantly higher after 60 abstinence days than after 1 or 15 days. Using unbiased ClearMap analysis, we identified increased activation of multiple brain regions, particularly corticostriatal structures, following 60 but not 1 or 15 abstinence days. We used orthogonal SMART2 analysis to confirm these findings within corticostriatal and thalamocortical subvolumes and applied expert-guided registration to investigate subdivision and layer-specific activation patterns. Overall, we 1) identified brain-wide activity patterns during incubation of food seeking using complementary analytical approaches and 2) provide a single-cell resolution whole-brain atlas that can be used to identify functional networks and global architecture underlying the incubation of food craving.


Assuntos
Fissura , Metanfetamina , Animais , Camundongos , Encéfalo , Fissura/fisiologia , Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Alimentos , Recidiva , Autoadministração
15.
Proc Natl Acad Sci U S A ; 119(43): e2210122119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256819

RESUMO

Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.


Assuntos
Síndrome de Smith-Magenis , Camundongos , Animais , Síndrome de Smith-Magenis/genética , Transativadores/genética , Transativadores/metabolismo , Fenótipo , Modelos Animais de Doenças , Cromatina , Hipocampo/metabolismo , Convulsões/genética , Tretinoína
16.
Proc Natl Acad Sci U S A ; 119(40): e2202536119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161898

RESUMO

Through synaptic connections, long-range circuits transmit information among neurons and connect different brain regions to form functional motifs and execute specific functions. Tracing the synaptic distribution of specific neurons requires submicron-level resolution information. However, it is a great challenge to map the synaptic terminals completely because these fine structures span multiple regions, even in the whole brain. Here, we develop a pipeline including viral tracing, sample embedding, fluorescent micro-optical sectional tomography, and big data processing. We mapped the whole-brain distribution and architecture of long projections of the parvalbumin neurons in the basal forebrain at the synaptic level. These neurons send massive projections to multiple downstream regions with subregional preference. With three-dimensional reconstruction in the targeted areas, we found that synaptic degeneration was inconsistent with the accumulation of amyloid-ß plaques but was preferred in memory-related circuits, such as hippocampal formation and thalamus, but not in most hypothalamic nuclei in 8-month-old mice with five familial Alzheimer's disease mutations. Our pipeline provides a platform for generating a whole-brain atlas of cell-type-specific synaptic terminals in the physiological and pathological brain, which can provide an important resource for the study of the organizational logic of specific neural circuits and the circuitry changes in pathological conditions.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Neurônios , Sinapses , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Prosencéfalo Basal/ultraestrutura , Modelos Animais de Doenças , Camundongos , Mutação , Neuroimagem , Neurônios/ultraestrutura , Parvalbuminas/análise , Sinapses/ultraestrutura
17.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35181604

RESUMO

Acute stress leads to sequential activation of functional brain networks. A biologically relevant question is exactly which (single) cells belonging to brain networks are changed in activity over time after acute stress across the entire brain. We developed a preprocessing and analytical pipeline to chart whole-brain immediate early genes' expression-as proxy for cellular activity-after a single stressful foot shock in four dimensions: that is, from functional networks up to three-dimensional (3D) single-cell resolution and over time. The pipeline is available as an R package. Most brain areas (96%) showed increased numbers of c-fos+ cells after foot shock, yet hypothalamic areas stood out as being most active and prompt in their activation, followed by amygdalar, prefrontal, hippocampal, and finally, thalamic areas. At the cellular level, c-fos+ density clearly shifted over time across subareas, as illustrated for the basolateral amygdala. Moreover, some brain areas showed increased numbers of c-fos+ cells, while others-like the dentate gyrus-dramatically increased c-fos intensity in just a subset of cells, reminiscent of engrams; importantly, this "strategy" changed after foot shock in half of the brain areas. One of the strengths of our approach is that single-cell data were simultaneously examined across all of the 90 brain areas and can be visualized in 3D in our interactive web portal.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Dor/fisiopatologia , Animais , Eletrochoque/métodos , Pé/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Análise de Célula Única , Análise Espaço-Temporal , Estresse Fisiológico/fisiologia
18.
BMC Biol ; 22(1): 95, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679719

RESUMO

BACKGROUND: The medial prefrontal cortex (mPFC) is involved in complex functions containing multiple types of neurons in distinct subregions with preferential roles. The pyramidal neurons had wide-range projections to cortical and subcortical regions with subregional preferences. Using a combination of viral tracing and fluorescence micro-optical sectioning tomography (fMOST) in transgenic mice, we systematically dissected the whole-brain connectomes of intratelencephalic (IT) and pyramidal tract (PT) neurons in four mPFC subregions. RESULTS: IT and PT neurons of the same subregion projected to different target areas while receiving inputs from similar upstream regions with quantitative differences. IT and PT neurons all project to the amygdala and basal forebrain, but their axons target different subregions. Compared to subregions in the prelimbic area (PL) which have more connections with sensorimotor-related regions, the infralimbic area (ILA) has stronger connections with limbic regions. The connection pattern of the mPFC subregions along the anterior-posterior axis showed a corresponding topological pattern with the isocortex and amygdala but an opposite orientation correspondence with the thalamus. CONCLUSIONS: By using transgenic mice and fMOST imaging, we obtained the subregional preference whole-brain connectomes of IT and pyramidal tract PT neurons in the mPFC four subregions. These results provide a comprehensive resource for directing research into the complex functions of the mPFC by offering anatomical dissections of the different subregions.


Assuntos
Conectoma , Camundongos Transgênicos , Córtex Pré-Frontal , Células Piramidais , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia , Camundongos , Masculino
19.
J Neurosci ; 43(18): 3259-3283, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37019622

RESUMO

Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Masculino , Feminino , Convulsões/induzido quimicamente , Encéfalo , Neurônios/fisiologia , Modelos Neurológicos
20.
Neuroimage ; 293: 120633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704057

RESUMO

Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso­scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso­scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso­scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Plasticidade Neuronal , Jogos de Vídeo , Humanos , Plasticidade Neuronal/fisiologia , Conectoma/métodos , Masculino , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Feminino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA