Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Biol Inorg Chem ; 29(1): 75-85, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38123706

RESUMO

Metallic titanium (Ti) implant surfaces need improvement for bioproperties and antibacterial behavior. For this purpose, a new boron-doped bioactive apatite-wollastonite (AW) coating was successfully developed on the Ti plate surface. The effects of boron addition on the microstructure, mechanical properties, and bioproperties of the AW coating were investigated. With the addition of boron (B), the AW coating morphology became less porous and compact. In terms of bio properties, the rate of apatite formation increased with the addition of B, and the cell viability rate increased from approximately 66-81%. B addition increased the elastic modulus of the AW coating from about 24-46 GPa and increased its hardness about 2.5 times. In addition, while no antibacterial activity was observed in the AW coating, the addition of boron slightly introduced antibacterial properties. The novel AW/B composite coating obtained is promising for Ti implant surfaces.


Assuntos
Apatitas , Compostos de Cálcio , Cerâmica , Silicatos , Titânio , Apatitas/química , Titânio/farmacologia , Titânio/química , Boro , Antibacterianos/farmacologia , Propriedades de Superfície
2.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747174

RESUMO

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Assuntos
Fósforo , Raízes de Plantas , Silicatos , Microbiologia do Solo , Solo , Fósforo/metabolismo , Solo/química , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Silicatos/metabolismo , Micorrizas/fisiologia , Compostos de Cálcio , Carbono/metabolismo
3.
Environ Res ; 234: 116552, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406726

RESUMO

Cementitious composite is one of the most widely used construction materials around the world, but cement production is accompanied by energy waste and CO2 emission. Wollastonite, a natural fibrous silicate mineral, can be a potential supplementary cementing materials (SCMs) for cementitious composite owing to its similar calcium silicate system, and it has an eco-friendly and convenient production process. Furthermore, its unique fibrous structure can possibly act as reinforcement for the cement matrix. In view of this, this study aimed to investigate the effects of different sizes (the median diameter of 3 µm, 6 µm, 9 µm and 12 µm) and contents (0%, 5%, 10%, 15% and 20% by mass) of wollastonite combined with 5% silica fume on the mechanical strength, durability and microstructure of cementitious composite by compressive test, flexural test, shear test, rapid chloride migration test, sulfate corrosion test, X-ray diffraction(XRD), scanning electron microscope (SEM) and fourier transform infrared spectrometer (FTIR). The results showed that the strength and durability of samples increased and then decreased as wollastonite content increased. An addition of 10% wollastonite into the cement matrix increased compressive strength, flexural strength and shear strength by 6.22%, 29.3% and 18.4%, respectively. However, an addition of 5% wollastonite was found to be more beneficial for improving resistance to chloride and sulfate corrosion. Additionally, samples prepared with 3 µm wollastonite performed better, which can be attributed to the fact that the small size of wollastonite contributed to both the filling effect and the skeletal support and bridging effect of microfibers. The CO2 emissions of cementitious composites decreased as the wollastonite percentage increased. The findings confirm that natural wollastonite as SCMs for cementitious composite has performance enhancement and environmental benefits, however, it is recommended that the wollastonite content should not exceed 15%.


Assuntos
Dióxido de Carbono , Cloretos , Silicatos , Carbono
4.
J Orthop Sci ; 28(2): 385-390, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35058113

RESUMO

BACKGROUND: Cementless glass ceramics containing apatite and wollastonite (AW-GC) bottom-coated titanium hip implants were developed; early excellent clinical and radiographic results have been reported previously. This study aimed to investigate the long-term clinical and radiographic outcomes in detail, and the wear rate of HXLPE. METHODS: We retrospectively evaluated 99 patients (117 hips) between November 2001 and December 2007. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. The extent of radiographic signs was determined from the radiographs performed at the last follow-up. Polyethylene wear was measured using Martell's Hip Analysis Suite. We assessed the possible factors affecting the steady-state linear wear rate. RESULTS: The mean follow-up period was 14.8 ± 2.1 (10-18.6) years. The mean JOA score improved to 88.7 ± 9.4 (59-100) at the final follow-up from 47.8 ± 12.5 (17-76) before surgery. The overall survival rate with the end point of all-cause revision and wear-related revision was 99% and 100% respectively. There was no osteolysis or loosening of either the acetabular or femoral component. All hips were classified as having bone ingrowth fixation. The mean steady-state wear rate was 0.008 ± 0.025 mm/year. We found no significant correlation between the wear rate and age, body weight, body mass index, cup inclination and femoral head size. CONCLUSION: The combination of AW-GC bottom-coated implants and HXLPE showed excellent implant survival and wear resistance for 15 years.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Artroplastia de Quadril/métodos , Polietileno , Estudos Retrospectivos , Seguimentos , Falha de Prótese , Desenho de Prótese
5.
J Microsc ; 286(2): 120-125, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34664277

RESUMO

Carbonated wollastonite clinker (CS) may be suitable as supplementary cementitious material (SCM) for mortar and concrete. The microstructure of unground CS clinker, carbonated CS slurry and a mortar blended with carbonated CS are investigated by scanning electron microscopy. Additionally, a reference mortar with pure Portland cement and one with a cement replacement level of 30 mass-% by carbonated CS are produced to assess its contribution to compressive strength development. The calcium silicates are decalcified during carbonation resulting in CaCO3 and amorphous SiO2 . The latter reacts when used as SCM in mortar influencing the Ca/Si ratio of calcium-silicate-hydrate and contributing to compressive strength development.


Assuntos
Cálcio , Dióxido de Silício , Compostos de Cálcio/química , Silicatos/química
6.
Chemistry ; 24(34): 8603-8608, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29644729

RESUMO

Concrete is the most important construction material used by mankind and, at the same time, one of the most complex substances known in materials science. Since this mineral compound is highly porous, a better understanding of its surface chemistry, and in particular the reaction with water, is urgently required to understand and avoid corrosion of infrastructure like buildings and bridges. We have gained insight into proton transfer from concrete upon contact with water by applying the so-called Surface Science approach to a well-defined mineral, Wollastonite. Data from IR (infrared) spectroscopy reveal that exposure of this calcium-silicate (CS) substrate to H2 O leads to dissociation and the formation of OH-species. This proton transfer is a chemical reaction of key importance, since on the one hand it triggers the conversion of cement into concrete (a calcium-silicate-hydrate phase), but on the other hand also governs the corrosion of concrete. Interestingly, we find that no proton transfer takes place when the same surface is exposed to methanol. In order to understand this unexpected difference, the analysis of the spectroscopic data obtained was aided by a detailed, first-principles computational study employing density functional theory (DFT). The combined experimental and theoretical effort allows derivation of a consistent picture of proton transfer reactions occurring in CS and CSH phases. Implications for strategies to protect this backbone of urban infrastructure from corrosion in harsh, aqueous environments will be discussed.

7.
J Microsc ; 265(3): 358-371, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27918627

RESUMO

Most liquid cell transmission electron microscopy (LC TEM) studies focus on nanoparticles or nanowires, in large part because the preparation and study of materials in this size range is straightforward. By contrast, this is not true for samples in the micrometre size range, in large part because of the difficulties associated with sample preparation starting from a 'bulk' material. There are also many advantages inherent to the study of micrometre-sized samples compared to their nanometre-sized counterparts. Here, we present a liquid cell transmission electron study that employed an innovative sample preparation technique using focused ion beam (FIB) milling to fabricate micrometre-sized electron transparent lamellae that were then welded to the liquid cell substrate. This technique, for which we have described in detail all of the fabrication steps, allows for samples having dimensions of several square micrometres to be observed by TEM in situ in a liquid. We applied this technique to test whether we could observe and measure in situ dissolution of a crystalline material called wollastonite, a calcium silicate mineral. More specifically, this study was used to observe and record surface dynamics associated with step and terrace edge movement, which are ultimately linked to the overall rate of dissolution. The wollastonite lamella underwent chemical reactions in pure deionized water at ambient temperature in a liquid cell with a 5-µm-spacer thickness. The movement of surface steps and terraces was measured periodically over a period of almost 5 h. Quite unexpectedly, the one-dimensional rates of retreat of these surface features were not constant, but changed over time. In addition, there were noticeable quantitative differences in retreat rates as a function crystallographic orientation, indicating that surface retreat is anisotropic. Several bulk rates of dissolution were also determined (1.6-4.2 • 10-7 mol m-2 s-1 ) using the rates of retreat of representative terraces and steps, and were found to be within one order of magnitude of dissolution rates in the literature based on aqueous chemistry data.

8.
J Biol Inorg Chem ; 21(1): 101-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26759250

RESUMO

Silica is the second most abundant biomineral being exceeded in nature only by biogenic CaCO3. Many land plants (such as rice, cereals, cucumber, etc.) deposit silica in significant amounts to reinforce their tissues and as a systematic response to pathogen attack. One of the most ancient species of living vascular plants, Equisetum arvense is also able to take up and accumulate silica in all parts of the plant. Numerous methods have been developed for elimination of the organic material and/or metal ions present in plant material to isolate biogenic silica. However, depending on the chemical and/or physical treatment applied to branch or stem from Equisetum arvense; other mineral forms such glass-type materials (i.e. CaSiO3), salts (i.e. KCl) or luminescent materials can also be isolated from the plant material. In the current contribution, we show the chemical and/or thermal routes that lead to the formation of a number of different mineral types in addition to biogenic silica.


Assuntos
Equisetum/química , Minerais/isolamento & purificação , Cristalografia por Raios X , Temperatura Alta , Microscopia Eletrônica de Varredura
9.
J Environ Manage ; 134: 15-9, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463731

RESUMO

Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C.


Assuntos
Celulose , Cerâmica , Materiais de Construção , Saccharum , Carbonato de Cálcio/química , Varredura Diferencial de Calorimetria , Carbonatos/química , Cristalização , Potássio/química , Reciclagem/métodos , Termogravimetria , Resíduos , Difração de Raios X
10.
Front Nutr ; 11: 1337996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638296

RESUMO

Cadmium (Cd) contamination of soil can strongly impact human health through the food chain due to uptake by crop plants. Inorganic immobilizing agents such as silicates and phosphates have been shown to effectively reduce Cd transfer from the soil to cereal crops. However, the effects of such agents on total Cd and its bioaccessibility in leafy vegetables are not yet known. Pak choi (Brassica rapa L. ssp. chinensis) was here selected as a representative leafy vegetable to be tested in pots to reveal the effects of silicate-phosphate amendments on soil Cd chemical fractions, total plant Cd levels, and plant bioaccessibility. The collected Cd contaminated soil was mixed with control soil at 1:0, 1:1, 1:4, 0:1 with a view to Cd high/moderate/mild/control soil samples. Three heavy metal-immobilizing agents: wollastonite (W), potassium tripolyphosphate (KTPP), and sodium hexametaphosphate (SHMP) were added to the soil in order to get four different treatment groups, i.e., control (CK), application of wollastonite alone (W), wollastonite co-applied with KTPP (WKTPP), application of wollastonite co-applied with SHMP (WSHMP) for remediation of soils with different levels of Cd contamination. All three treatments increased the effective bio-Cd concentration in the soils with varying levels of contamination, except for W under moderate and heavy Cd contamination. The total Cd concentration in pak choi plants grown in mildly Cd-contaminated soil was elevated by 86.2% after WKTPP treatment compared to the control treatment could function as a phytoremediation aid for mildly Cd-contaminated soil. Using an in vitro digestion method (physiologically based extraction test) combined with transmission electron microscopy, silicate and phosphorus agents were found to reduce the bioaccessibility of Cd in pak choi by up to 66.13% with WSHMP treatment. Application of silicate alone reduced soil bio-Cd concentration through the formation of insoluble complexes and silanol groups with Cd, but the addition of phosphate may have facilitated Cd translocation into pak choi by first co-precipitating with Ca in wollastonite while simultaneously altering soil pH. Meanwhile, wollastonite and phosphate treatments may cause Cd to be firmly enclosed in the cell wall in an insoluble form, reducing its translocation to edible parts and decreasing the bioaccessibility of Cd in pak choi. This study contributes to the mitigation of Cd bioaccessibility in pak choi by reducing soil Cd concentration through in situ remediation and will help us to extend the effects of wollastonite and phosphate on Cd bioaccessibility to other common vegetables. Therefore, this study thus reveals effective strategies for the remediation of soil Cd and the reduction of Cd bioaccessibility in crops based on two indicators: total Cd and Cd bioaccessibility. Our findings contribute to the development of methods for safer cultivation of commonly consumed leafy vegetables and for soil remediation.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38856850

RESUMO

This research paper aims to explore the effect of graphite, wollastonite, and titanium dioxide as reinforcing fillers on starch-based biodegradable plastic (SBP) films. GF-SBP (graphite filler containing SBP), WF-SBP (wollastonite containing SBP), and TF-SBP (titanium dioxide containing SBP) films were developed and analyzed for various properties such as thickness, density, tensile strength, elongation break, morphology, thermal stability, solubility, moisture content, moisture absorbance, biodegradability, and antibacterial activity. The results reveal that WF-SBP films had the highest tensile strength of 5.43 MPa and greatest elongation break value of 22% as compared to other films. Thermogravimetric analysis showed that SBP films with and without filler degraded slowly between 150 and 600°C. The highest thermal stability was recorded for TF-SBP films which showed stability (11% mass loss) up to 150°C. The biodegradability test conducted using soil burial method suggested that TF-SBP film degraded within 90 days, GF-SBP films degraded completely in 120 days, and WF-SBP films took more than 120 days to degrade. The synthesized SBP films were analyzed for their antibacterial potential against gram-positive and gram-negative bacteria, and results showed that WF-SBP film exhibited the best antibacterial activity by producing a large zone of inhibition against Escherichia coli.

12.
Bioact Mater ; 36: 551-564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39072286

RESUMO

Prosthetic eye is indispensable as filler after enucleation in patients with anophthalmia, whereas there are still many complications including postoperative infection and eye socket depression or extrusion during the conventional artificial eye material applications. Some Ca-silicate biomaterials showed superior bioactivity but their biological stability in vivo limit the biomedical application as long-term or permanent implants. Herein we aimed to understand the physicochemical and potential biological responses of zinc doping in wollastonite bioceramic used for orbital implants. The wollastonite powders with different zinc dopant contents (CSi-Znx) could be fabricated as porous implants with strut or curve surface pore geometries (cubic, IWP) via ceramic stereolithography. The experimental results indicated that, by increasing zinc-substituting-Ca ratio (up to 9%), the sintering and mechanical properties could be significantly enhanced, and meanwhile the bio-dissolution in vitro and biodegradability in vivo were thoroughly inhibited. In particular, an appreciable angiogenic activity and expected antibacterial efficacy (over 90 %) were synergistically achieved at 9 mol% Zn dopant. In the back-embedding and enucleation and implantation model experiments in rabbits, the superior continuous angiogenesis was corroborated from the 2D/3D fibrovascular reconstruction in the IWP-pore CSi-Zn9 and CSi-Zn13.5 groups within very short time stages. Totally, the present silicate-based bioceramic via selective Zn doping could produce outstanding structural stability and bifunctional biological responses which is especially valuable for developing the next-generation implants with vascular insertion and fixation in orbital reconstruction prothesis.

13.
Sci Rep ; 14(1): 21752, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294179

RESUMO

The study focuses on synthesizing wollastonite using bypass and silica fume waste materials as starting materials. The novelty of this work is the utilization of temperature-induced forming technique for the synthesis of wollastonite. Bypass and silica fume are mixed with various CaO/SiO2 ratios and then cast and fired at temperatures ranging from 900 to 1200 °C. Rheological properties and zeta potential are characterized for the slurries to optimize the dispersant percentage. The fired samples' phase composition, structure properties, apparent porosity, linear shrinkage, and compressive strength are characterized. Results show that the sample with a CaO: SiO2 ratio of 1:1.45 is the optimum composition for forming mainly pure ß-wollastonite at 1100 °C, which changed into pseudo-wollastonite at about 1150 °C. The best physical and mechanical properties are obtained at 1170 °C, including apparent porosity of 8%, bulk density of 2.2 g/cm3, linear shrinkage of 13%, and compressive strength of 40 MPa, which widens its ceramic applications.

14.
Waste Manag ; 178: 331-338, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430747

RESUMO

The combination of microbial electrolytic cells and anaerobic digestion (MEC-AD) became an efficient method to improve CO2 capture for waste sludge treatment. By adding CaCl2 and wollastonite, the CO2 sequestration effect with mineral carbonation under 0 V and 0.8 V was studied. The results showed that applied voltage could increase dissolved chemical oxygen demand (SCOD) degradation efficiency and biogas yield effectively. In addition, wollastonite and CaCl2 exhibited different CO2 sequestration performances due to different Ca2+ release characteristics. Wollastonite appeared to have a better CO2 sequestration effect and provided a wide margin of pH change, but CaCl2 released Ca2+ directly and decreased the pH of the MEC-AD system. The results showed methane yield reached 137.31 and 163.50 mL/g SCOD degraded and CO2 content of biogas is only 12.40 % and 2.22 % under 0.8 V with CaCl2 and wollastonite addition, respectively. Finally, the contribution of chemical CO2 sequestration by mineral carbonation and biological CO2 sequestration by hydrogenotrophic methanogenesis was clarified with CaCl2 addition. The chemical and biological CO2 sequestration percentages were 46.79 % and 53.21 % under 0.8 V, respectively. With the increased applied voltage, the contribution of chemical CO2 sequestration rose accordingly. The findings in this study are of great significance for further comprehending the mechanism of calcium addition on CO2 sequestration in the MEC-AD system and providing guidance for the later engineering application.


Assuntos
Compostos de Cálcio , Dióxido de Carbono , Esgotos , Silicatos , Dióxido de Carbono/química , Anaerobiose , Biocombustíveis , Cloreto de Cálcio , Minerais , Carbonatos , Metano , Reatores Biológicos
15.
Mater Today Bio ; 24: 100936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234459

RESUMO

Structural parameters of the implants such as shape, size, and porosity of the pores have been extensively investigated to promote bone tissue repair, however, it is unknown how the pore interconnectivity affects the bone growth behaviors in the scaffolds. Herein we systematically evaluated the effect of biodegradable bioceramics as a secondary phase filler in the macroporous networks on the mechanical and osteogenic behaviors in sparingly dissolvable bioceramic scaffolds. The pure hardystonite (HT) scaffolds with ∼550 & 800 µm in pore sizes were prepared by digital light processing, and then the Sr-doped calcium silicate (SrCSi) bioceramic slurry without and with 30 % organic porogens were intruded into the HT scaffolds with 800 µm pore size and sintered at 1150 °C. It indicated that the organic porogens could endow spherical micropores in the SrCSi filler, and the invasion of the SrCSi component could not only significantly enhance the compressive strength and modulus of the HT-based scaffolds, but also induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The pure HT scaffolds showed extremely slow bio-dissolution in Tris buffer after immersion for 8 weeks (∼1 % mass decay); in contrast, the SrCSi filler would readily dissolve into the aqueous medium and produced a steady mass decay (>6 % mass loss). In vivo experiments in rabbit femoral bone defect models showed that the pure HT scaffolds showed bone tissue ingrowth but the bone growth was impeded in the SrCSi-intruded scaffolds within 4 weeks; however, the group with higher porosity of SrCSi filler showed appreciable osteogenesis after 8 weeks of implantation and the whole scaffold was uniformly covered by new bone tissues after 16 weeks. These findings provide some new insights that the pore interconnectivity is not inevitable to impede bone ingrowth with the prolongation of implantation time, and such a highly biodegradable and bioactive filler intrusion strategy may be beneficial for optimizing the performances of scaffolds in bone regenerative medicine applications.

16.
J Orthop Translat ; 45: 88-99, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516038

RESUMO

Background: Alveolar bone destruction due to periodontal disease often requires a bone graft substitute to reconstruct the anatomical structures and biological functions of the bone tissue. Despite significant advances in the development of foreign ion-doped nonstoichiometric wollastonite bioceramics (CaSiO3, nCSi) for alveolar bone regeneration over the past decade, the in vivo biosafety and osteogenesis of nCSi scaffolds remain uncertain. In this study, we developed a customized porous nCSi scaffold to investigate the in vivo biocompatibility and osteogenic properties of nCSi bioceramics. Methods: Six percent Mg-doped nCSi bioceramic scaffolds were fabricated by digital light processing (DLP), and the scaffold morphology, pore architecture, compressive strength, in vitro biodegradation, and apatite-forming ability of the bioceramic scaffolds were investigated systematically. Subsequently, an alveolar bone defect rabbit model was used to evaluate the biocompatibility and osteogenic efficacy of the nCSi bioceramics. Animal weight, hematological test, blood biochemical test, wet weight of the main organs, and pathological examination of the main organs were conducted. Micro-CT and histological staining were performed to analyze the osteogenic potential of the personalized bioceramic scaffolds. Results: The nCSi scaffolds exhibited appreciable initial compressive strength (>30 MPa) and mild mechanical decay over time during in vitro biodissolution. In addition, the scaffolds induced apatite remineralization in SBF. Bioceramic scaffolds have been proven to have good biocompatibility in vivo after implantation into the alveolar bone defect of rabbits. No significant effects on the hematological indices, blood biochemical parameters, organ wet weight, or organ histopathology were detected from 3 to 180 days postoperatively. The porous scaffolds exhibited strong bone regeneration capability in the alveolar bone defect model of rabbits. Micro-CT and histological examination showed effective maintenance of bone morphology in the bioceramic scaffold group; however, depressed bone tissue was observed in the control group. Conclusions: Our results suggest that personalized nCSi bioceramic scaffolds can be fabricated using the DLP technique. These newly developed strong bioceramic scaffolds exhibit good biocompatibility and osteogenic capability in vivo and have excellent potential as next-generation oral implants. The translational potential of this article: Tissue-engineered strategies for alveolar bone repair require a bone graft substitute with appreciable biocompatibility and osteogenic capability. This article provides a systematic investigation of the in vivo biosafety and osteogenic property of nCSi to further development of a silicate-based bioceramics materials for clinical applications.

17.
Environ Sci Pollut Res Int ; 31(13): 20048-20072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372924

RESUMO

While several research studies considered the utilization of reclaimed asphalt pavement (RAP) aggregates for asphalt and concrete pavements, very few attempted its possible utilization for precast concrete applications like concrete paver blocks (CPBs). Moreover, few attempts made in the recent past to improve the strength properties of RAP inclusive concrete mixes by incorporating certain supplementary cementitious materials (SCMs) have reported an insignificant or marginal effect. The present study attempts to comprehensively investigate the utilization potential of some locally and abundantly available materials having suitable physicochemical properties to improve the performance of a zero-slump CPB mix containing 50% RAP aggregates. The studied filler materials, namely, wollastonite (naturally occurring calcium metasilicate mineral) and jarosite (hazardous zinc industry waste), were used to replace 5-15% and 10-20% by volume of Portland cement in the 50% RAP CPB mix. Apart from their individual effects, the efficacy of wollastonite-jarosite blends was also investigated. Considering the lack of indoor storage facilities and economic aspects of CPBs, the influence of water spray curing regime on the performance of the RAP CPB mixes was studied and compared to that of continuous water curing regime. Inclusion of the considered fillers was found to statistically and significantly enhance the flexural strength, tensile splitting strength, and abrasion resistance of the 50% RAP CPB mix; however, the compressive strength (in most cases), permeable voids, water absorption, and water permeability properties showed an insignificant improvement. Results of thermogravimetric analysis confirmed the occurrence of pozzolanic reactivity, and microstructure analysis revealed improvements in packing of concrete matrix and ITZ with filler inclusion qualitatively substantiating the improvements in strength and durability characteristics. The toxicity characteristics of heavy metals that may leach from the hazardous jarosite-based RAP CPB mixes were found to be within permissible limits. Based on the performance requirements specified by IS, IRC, and ASTM standards, all the RAP CPB mixes with filler inclusions fulfilled the acceptance criteria for heavy traffic applications, and water spray curing can enact as an alternate method for curing these mixes. However, to avail maximum performance benefits, it is recommended to use 5% wollastonite, 15% jarosite, and a combination of 10% wollastonite and 10% jarosite as a Portland cement substitute to produce sustainable eco-friendly RAP CPB mixes.


Assuntos
Compostos de Cálcio , Poeira , Compostos Férricos , Hidrocarbonetos , Silicatos , Sulfatos , Desenvolvimento Sustentável , Excipientes , Resíduos Perigosos , Água
18.
Front Bioeng Biotechnol ; 12: 1321466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361789

RESUMO

Context: The development of porous devices using materials modified with various natural agents has become a priority for bone healing processes in the oral and maxillofacial field. There must be a balance between the proliferation of eukaryotic and the inhibition of prokaryotic cells to achieve proper bone health. Infections might inhibit the formation of new alveolar bone during bone graft augmentation. Objective: This study aimed to evaluate the in vitro osteogenic behavior of human bone marrow stem cells and assess the antimicrobial response to 3D-printed porous scaffolds using propolis-modified wollastonite. Methodology: A fractional factorial design of experiments was used to obtain a 3D printing paste for developing scaffolds with a triply periodic minimal surface (TPMS) gyroid geometry based on wollastonite and modified with an ethanolic propolis extract. The antioxidant activity of the extracts was characterized using free radical scavenging methods (DPPH and ABTS). Cell proliferation and osteogenic potential using Human Bone Marrow Stem Cells (bmMSCs) were assessed at different culture time points up to 28 days. MIC and inhibition zones were studied from single strain cultures, and biofilm formation was evaluated on the scaffolds under co-culture conditions. The mechanical strength of the scaffolds was evaluated. Results: Through statistical design of experiments, a paste suitable for printing scaffolds with the desired geometry was obtained. Propolis extracts modifying the TPMS gyroid scaffolds showed favorable cell proliferation and metabolic activity with osteogenic potential after 21 days. Additionally, propolis exhibited antioxidant activity, which may be related to the antimicrobial effectiveness of the scaffolds against S. aureus and S. epidermidis cultures. The mechanical properties of the scaffolds were not affected by propolis impregnation. Conclusion: These results demonstrate that propolis-impregnated porous wollastonite scaffolds might have the potential to stimulate bone repair in maxillofacial tissue engineering applications.

19.
Polymers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514376

RESUMO

Polypropylene (PP) is one of the most commercially used thermoplastics, while a significant amount of PP is used in the form of fibers. In this study, the effects of modification of the filler on the thermal and mechanical properties of composite polypropylene/wollastonite drawn fibers were investigated. In this direction, the surface modification of wollastonite with various organic acids, such as myristic, maleic, malonic glutaric, pimelic, and suberic acid, and the use of two solvents were studied. The surface-modified wollastonite particles were used to produce composite polypropylene drawn fibers. The modification efficiency was found to be slightly better when a non-polar solvent (carbon tetrachloride) was used instead of a polar one (ethanol). FTIR experiments showed that myristic, maleic, malonic, and pimelic acid can strongly interact with wollastonite's surface. However, the mechanical strength of the composite fibers was not increased compared to that of the neat PP fibers, suggesting inadequate interactions between PP and wollastonite particles. Furthermore, it was observed that the drawing process increased around 10% the crystallinity of all samples. Wollastonite modified with malonic acid acted as a nucleating agent for ß-crystals. The onset decomposition temperature increased by 5-10 °C for all samples containing 2% wollastonite, either modified or not. The suggested modifications of wollastonite might be more suitable for less hydrophobic polymers.

20.
Materials (Basel) ; 16(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138844

RESUMO

The modification mechanism of low-molecular-weight organic acids on a single-chain silicate mineral (wollastonite) was investigated through a leaching method. Solid and liquid samples were analyzed using atomic absorption spectrophotometer (AAS), X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR). After 720 h of reaction, the results revealed that the dissolution concentration of Si (2200 µmol/L) in citric acid solution is more than that (1950 µmol/L) in oxalic acid. In the composite acids (citric acid and oxalic acid), the dissolution concentration of Si release from wollastonite reached the maximum value of 3304 µmol/L. The dissolution data of Si in wollastonite were fittingly described by the parabolic equation (Ct = a + bt1/2), with the highest correlation coefficients (R2 > 0.993), in the presence of the low-molecular-weight organic acids. The dissolution data suggested that the dissolution reaction process of Si was consistent with the diffusion-controlled model. Citric acid exhibited a higher affinity for attacking the (200) surface, while oxalic acid was prone to dissolve the (002) crystal face. The synergistic effects of oxalic acid and citric acid led to the weakening of the XRD diffraction peak intensity of wollastonite. When exposed to composite acids, the surface of wollastonite was covered with insoluble reactants that restricted the substance diffusion and hindered the reaction. This study offers valuable theoretical insights into the modification or activation of wollastonite by composite low-molecular-weight organic acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA