Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mikrochim Acta ; 186(12): 749, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31696297

RESUMO

This review (with 160 ref.) summarizes the progress that has been made in the methods for chemical or biochemical sensing of hypoxanthine and xanthine, which are produced as part of purine metabolism and are precursors of uric acid. An introduction discusses the importance of hypoxanthine and xanthine as analytes due to their significance in the clinical and food science, together with the conventional methods of analysis. A large section covers methods for the electrochemical hypoxanthine and xanthine sensing. It is divided into subsections according to the nanomaterials used including carbon nanomaterials, meal oxide nanoparticles, metal organic frameworks, conductive polymers, and bio-nanocomposites. A further large section covers optical methods for hypoxanthine and xanthine sensing, with subsections on nanomaterials including carbon nanomaterials, nanosheets, nanoclusters, nanoparticles, and their bio-nanocomposites. A concluding section summarizes the current status, addresses current challenges, and discusses future perspectives. Graphical abstractSchematic representation of the hypoxanthine and xanthine electrochemical and optical sensors incorporating various nanomaterials like graphene, carbon nanotubes (CNT), quantum dots (QD), nanoparticles and polymers, which are implemented in clinical and food analysis.


Assuntos
Técnicas Eletroquímicas/métodos , Hipoxantina/análise , Nanopartículas Metálicas/química , Fotometria/métodos , Xantina/análise , Colorimetria/métodos , Corantes Fluorescentes/química , Análise de Alimentos/métodos , Conservação de Alimentos , Grafite/química , Estruturas Metalorgânicas/química , Nanotubos de Carbono/química , Polímeros/química
2.
Toxicol Appl Pharmacol ; 353: 102-108, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29935280

RESUMO

BACKGROUND: The aim of our study was to identify the genetic background of thiopurine-induced toxicity in a patient with a wild-type thiopurine methyltransferase genotype and activity. A 38-year-old Caucasian woman presented with cutaneous necrotizing vasculitis pancytopenia one month after starting azathioprine therapy. METHODS: During a routine biochemical follow-up of the patient, undetectable serum uric acid (<10 µl) was observed. A high performance liquid chromatography analysis of urinary purines revealed increased levels of xanthine (137 mmol/mol creatinine). The suspected diagnosis of hereditary xanthinuria, a rare autosomal recessive disorder of the last two steps of purine metabolism, was confirmed by sequence analysis. RESULTS: An analysis of XDH/XO and AOX1 revealed common polymorphisms, while analysis of the MOCOS gene identified a rare homozygous variant c.362C > T. Dysfunction of this variant was confirmed by significantly decreased xanthine dehydrogenase/oxidase activity in the patient's plasma (<2% of control mean activity). CONCLUSIONS: We present a biochemical, enzymatic, and molecular genetic case study suggesting an important association between a hitherto undescribed dysfunction variant in the MOCOS gene and thiopurine-induced toxicity. The identified variant c.362C > T results in slower thiopurine metabolism caused by inhibition of 6-mercaptopurine oxidation (catabolism) to 6-thioxanthine and 6-thiouric acid, which increases the formation of the nucleotide 6-thioguanine, which is toxic. This is the first clinical case to identify the crucial role of the MOCOS gene in thiopurine intolerance and confirm the impact of genetic variability of purine enzymes on different therapeutic outcomes in patients undergoing thiopurine treatment.


Assuntos
Aldeído Oxidase/deficiência , Mercaptopurina/análogos & derivados , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Sulfurtransferases/genética , Xantina Desidrogenase/deficiência , Adulto , Aldeído Oxidase/genética , Feminino , Humanos , Mercaptopurina/efeitos adversos , Mercaptopurina/metabolismo , Metiltransferases/genética , Polimorfismo Genético/genética , Ácido Úrico/sangue , Xantina/urina , Xantina Desidrogenase/genética , Xantina Oxidase/genética
3.
J Inherit Metab Dis ; 41(3): 337-353, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453510

RESUMO

The implementation of whole-exome sequencing in clinical diagnostics has generated a need for functional evaluation of genetic variants. In the field of inborn errors of metabolism (IEM), a diverse spectrum of targeted biochemical assays is employed to analyze a limited amount of metabolites. We now present a single-platform, high-resolution liquid chromatography quadrupole time of flight (LC-QTOF) method that can be applied for holistic metabolic profiling in plasma of individual IEM-suspected patients. This method, which we termed "next-generation metabolic screening" (NGMS), can detect >10,000 features in each sample. In the NGMS workflow, features identified in patient and control samples are aligned using the "various forms of chromatography mass spectrometry (XCMS)" software package. Subsequently, all features are annotated using the Human Metabolome Database, and statistical testing is performed to identify significantly perturbed metabolite concentrations in a patient sample compared with controls. We propose three main modalities to analyze complex, untargeted metabolomics data. First, a targeted evaluation can be done based on identified genetic variants of uncertain significance in metabolic pathways. Second, we developed a panel of IEM-related metabolites to filter untargeted metabolomics data. Based on this IEM-panel approach, we provided the correct diagnosis for 42 of 46 IEMs. As a last modality, metabolomics data can be analyzed in an untargeted setting, which we term "open the metabolome" analysis. This approach identifies potential novel biomarkers in known IEMs and leads to identification of biomarkers for as yet unknown IEMs. We are convinced that NGMS is the way forward in laboratory diagnostics of IEMs.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Erros Inatos do Metabolismo/diagnóstico , Metaboloma , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Humanos , Redes e Vias Metabólicas , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Metabolômica/métodos , Estudos Retrospectivos , Espectrometria de Massas em Tandem
7.
J Feline Med Surg ; 26(5): 1098612X241241408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717789

RESUMO

CASE SERIES SUMMARY: Four confirmed cases of xanthinuria in cats, and one suspected case based on pedigree analysis, were identified. Clinical presentations varied and included haematuria, pollakiuria, dysuria, and urethral and ureteral obstruction. All cats had upper urinary tract uroliths. Diagnosis was obtained through infrared mass spectrometry of uroliths or urine. Clinical signs commenced at 3-8 months of age and reduced in all cats in the medium to long term after the introduction of a protein-restricted diet. Four cats were castrated males and one was a spayed female. Cases consisted of four Munchkin pedigree cats and one unrelated domestic shorthair cat. All four affected Munchkin pedigree cats were related, with three cases full siblings and the fourth case a half-sibling. No connection to the Munchkin pedigree could be established for the domestic shorthair cat. A candidate causative genetic variant (XDH p.A681V) proposed for this cat was excluded in the Munchkin family. RELEVANCE AND NOVEL INFORMATION: All affected cats presented diagnostic challenges and routine urinalysis was insufficient to obtain a diagnosis. Cases of feline xanthinuria may be underdiagnosed due to situations where uroliths cannot be retrieved for analysis and there is an inability to make a diagnosis using crystal morphology alone on routine urinalysis. Metabolic screening of urine may provide an effective mechanism to confirm xanthinuria in suspected cases where uroliths are inaccessible or absent. In this case series, male cats were more common. Their anatomy may increase the risk of lower urinary tract signs and urethral obstruction developing secondary to xanthine urolithiasis. A protein-restricted diet appears to reduce clinical signs as part of long-term management. PLAIN LANGUAGE SUMMARY: Four closely related Munchkin cats and one domestic shorthair cat were found with a suspected genetic disease causing high levels of xanthine in their urine. The case series looks at similarities and differences in their clinical signs, as well as difficulties experienced in obtaining a correct diagnosis. All cats had upper urinary tract stones and required metabolic testing of the stones or urine to diagnose. All cats were young when their clinical signs started and were on a high-protein diet. Four cats were desexed males and one was a desexed female. A genetic variant that may have caused the disease in the domestic shorthair cat was ruled out in the Munchkin family. Cases of high xanthine levels in feline urine may be underdiagnosed as the stones may not be accessed for testing. In this case series, male cats were more common. Their anatomy may increase the risk of lower urinary tract signs. A protein-restricted diet appears to reduce clinical signs as part of long-term management.


Assuntos
Doenças do Gato , Linhagem , Gatos , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/urina , Doenças do Gato/genética , Masculino , Feminino , Urolitíase/veterinária , Urolitíase/diagnóstico , Urolitíase/urina
8.
Indian J Nephrol ; 34(4): 403-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156844

RESUMO

Type-II Xanthanuria is an genetic disorder associated with diminished serum uric acid levels. Patients with xanthanuria has absence of xanthine oxidase or xanthine dehydrogenase activity, the enzyme that converts hypoxanthine to xanthine and xanthine to uric acid. Deficiency of these enzyme leads to elevated levels of xanthine in urine which further leads to precipitation of xanthine in urine which further helps to formation of renal stones and ultimately leads to chronic kidney disease and end stage renal disease. We report a 23 years old male, who reached ESRD due to Type 2 xanthinuria, which was confirmed by genetic studies, who later successfully underwent renal transplant surgery and currently having normal life with functioning graft.

9.
Nephron ; 148(8): 578-583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527446

RESUMO

Hereditary xanthinuria (HXAN) is a rare metabolic disorder that results from mutations in either the xanthine dehydrogenase (XDH) or the molybdenum cofactor sulfurase genes (MOCOS), respectively defining HXAN type I and type II. Hypouricemia, hypouricosuria, and abnormally high plasma and urine levels of xanthine, causing susceptibility to xanthine nephrolithiasis and deposition of xanthine crystals in tissues, are the metabolic hallmarks of HXAN. Several pathogenic variants in the XDH gene have so far been identified in patients with HXAN type I, but the clinical phenotype associated with the whole deletion of the human XDH gene is unknown. Herein, we report the case of a woman diagnosed with HXAN, whose molecular genetic testing revealed a homozygous microdeletion involving the XDH gene. Distinctive features of her medical history were the diagnosis of arterial hypertension and microalbuminuria at 22 years of age; a single pregnancy at the age of 25, complicated by proteinuria and transient kidney function deterioration in the third trimester; unexplained severe hypouricemia incidentally discovered during pregnancy; inability to breastfeed her newborn daughter due to primary agalactia; chronic kidney disease (CKD) stage 3 diagnosed at age 35; and progression to end-stage kidney disease over the next 12 years. Protocol noninvasive laboratory and imaging investigation was not informative as to the cause of CKD. This is the first description of the clinical phenotype associated with a natural knockout of the human XDH gene. Despite the lack of kidney histopathology data, the striking similarities with the phenotypes exhibited by comparable murine models validate the latter as useful sources of mechanistic insights for the pathogenesis of the human disease, supporting the hypothesis that the absence of xanthine dehydrogenase activity might represent a susceptibility factor for chronic tubulointerstitial nephritis, even in patients without kidney stones.


Assuntos
Homozigoto , Cálculos Renais , Xantina Desidrogenase , Humanos , Xantina Desidrogenase/genética , Xantina Desidrogenase/deficiência , Feminino , Cálculos Renais/genética , Adulto , Insuficiência Renal/genética , Insuficiência Renal/etiologia , Deleção de Genes , Adulto Jovem , Gravidez , Erros Inatos do Metabolismo
10.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825475

RESUMO

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Facilitadoras de Transporte de Glucose , Hiperuricemia , Proteínas de Neoplasias , Transportadores de Ânions Orgânicos , Ácido Úrico , Xantina Desidrogenase , Humanos , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Hiperuricemia/genética , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Xantina Desidrogenase/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/deficiência , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/etiologia , Erros Inatos do Transporte Tubular Renal/metabolismo , Cálculos Urinários/etiologia , Cálculos Urinários/metabolismo , Cálculos Urinários/genética , Erros Inatos do Metabolismo
11.
IJU Case Rep ; 6(6): 436-439, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928284

RESUMO

Introduction: Early diagnosis of patients with urolithiasis or hypouricemia owing to inborn errors of hypoxanthine metabolism is important in preventing renal failure or drug-induced toxicity. Case presentation: We identified three patients with xanthinuria using gas chromatography/mass spectrometry-based urine metabolomics: a 72-year-old male with bladder stone, a severe hypouricemic 59-year-old female with type 2 diabetes mellitus, and an 8-year and 9-month-old female who was first discovered to harbor a mutation in the xanthine dehydrogenase gene using whole-exome sequencing, but had a normal molybdenum cofactor sulfurase gene. Hydantoin-5-propionate was detected in the first and third patients but not in the second, suggesting that the first and second patients had type I and II xanthinuria, respectively. Conclusion: Gas chromatography/mass spectrometry-based metabolomics can be used for undiagnosed patients with xanthinuria, identification of the type of xanthinuria without allopurinol loading, and the quick functional evaluation of mutations in the xanthinuria-related genes.

12.
Animals (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835666

RESUMO

Reducing the alimentary purine intake contributes to the prevention of purine (especially xanthine) urolith formation, a common adverse effect of allopurinol treatment in dogs with Leishmania infections. Analyses of the purine content are not required in order to advertise a diet as low in purine. Due to different analytical methods, data provided on purine content are barely comparable. The aim of this study was to investigate the total purine content of 12 different dog diets. For this, the purine bases adenine, guanine, xanthine, and hypoxanthine were determined by standardised high performance liquid chromatography in commercially available urinary diets (n = 4), kidney diets (n = 2), low protein diets (n = 3), 1 vegan diet, 1 regular diet for healthy adult dogs, and 1 homemade low purine diet. Total purine amounts ranged between 10.2 and 90.9 mg/100 g of dry matter. The daily purine intake calculated for a 20 kg standard dog with the analysed diets ranged between 21.9 and 174.7 mg. The lowest daily purine intakes were achieved by 2 urinary urate diets, followed by the homemade diet. Differences in the purine content of commercially available diets need to be considered. Awareness has to be raised when selecting diets for dogs with Leishmania infections during allopurinol treatment in order to minimise the risk of urolith formation.

13.
Biomedicines ; 10(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35884889

RESUMO

Renal hypouricemia is a disease caused by the dysfunction of renal urate transporters. This disease is known to cause exercise-induced acute kidney injury, but its mechanism has not yet been established. To analyze the mechanism by which hypouricemia causes renal failure, we conducted a semi-ischemic forearm exercise stress test to mimic exercise conditions in five healthy subjects, six patients with renal hypouricemia, and one patient with xanthinuria and analyzed the changes in purine metabolites. The results showed that the subjects with renal hypouricemia had significantly lower blood hypoxanthine levels and increased urinary hypoxanthine excretion after exercise than healthy subjects. Oxidative stress markers did not differ between healthy subjects and hypouricemic subjects before and after exercise, and no effect of uric acid as a radical scavenger was observed. As hypoxanthine is a precursor for adenosine triphosphate (ATP) production via the salvage pathway, loss of hypoxanthine after exercise in patients with renal hypouricemia may cause ATP loss in the renal tubules and consequent tissue damage.

14.
Intern Med ; 61(9): 1383-1386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491177

RESUMO

Whether or not extremely low levels of serum uric acid (SUA) in xanthinuria are associated with impairment of the endothelial function and exercise-induced acute kidney injury (EIAKI) is unclear. A 59-year-old woman without EIAKI or urolithiasis had undetectable levels of UA in serum and urine and elevated levels of hypoxanthine and xanthine in urine. A genetic analysis revealed homozygous mutations in the XDH gene [c.1585 C>T (p. Gln529*)]. Flow-mediated dilation was within the normal range. This is the first report of a case with extremely low levels of SUA, xanthinuria with novel mutations of xanthine dehydrogenase (XDH) and a normal endothelial function.


Assuntos
Erros Inatos do Metabolismo , Xantina Desidrogenase , Feminino , Humanos , Erros Inatos do Metabolismo/genética , Pessoa de Meia-Idade , Mutação/genética , Ácido Úrico , Xantina Desidrogenase/deficiência , Xantina Desidrogenase/genética
15.
Int J Organ Transplant Med ; 13(1): 60-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37383421

RESUMO

Heredity hypouricemia is caused by renal hypouricemia or xanthinuria. Xanthinuria is divided into type 1 with deficiency of xanthine dehydrogenase and type 2 with xanthine dehydrogenase and aldehyde oxidase deficiency. We report a case of xanthinuria type 1 that developed with kidney failure. Hemodialysis was done for him, but kidney function was not improved, so a kidney transplant was performed for him. His serum uric acid was 0.1 mg/dl before and after transplantation.

16.
Biomedicines ; 10(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327453

RESUMO

Hypouricemia is recognized as a rare disorder, defined as a serum uric acid level of 2.0 mg/dL or less. Hypouricemia is divided into an overexcretion type and an underproduction type. The former typical disease is xanthinuria, and the latter is renal hypouricemia (RHUC). The frequency of nephrogenic hypouricemia due to a deficiency of URAT1 is high in Japan, accounting for most asymptomatic and persistent cases of hypouricemia. RHUC results in a high risk of exercise-induced acute kidney injury and urolithiasis. It is vital to promote research on RHUC, as this will lead not only to the elucidation of its pathophysiology but also to the development of new treatments for gout and hyperuricemia.

17.
Adv Lab Med ; 2(4): 567-574, 2021 Nov.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37360896

RESUMO

Objectives: Hereditary xanthinuria is a rare, autosomal and recessive disorder characterized by severe hypouricemia and increased xanthine excretion, caused by a deficiency of xanthine dehydrogenase/oxidase (XDH/XO, EC: 1.17.1.4/1.17.3.2) in type I, or by a deficiency of XDH/XO and aldehyde oxidase (AOX, EC: 1.2.3.1) in type II. Methods: We describe a novel point mutation in the XDH gene in homozygosis found in a patient with very low serum and urine levels of uric acid, together with xanthinuria. He was asymptomatic but renal calculi were discovered during imaging. Results: Additional cases were found in his family and dietary recommendations were made in order to prevent further complications. Conclusions: Hereditary xanthinuria is an underdiagnosed pathology, often found in a routine analysis that shows hypouricemia. It is important for Laboratory Medicine to acknowledge how to guide clinicians in the diagnosis.

18.
CEN Case Rep ; 10(3): 378-382, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33502714

RESUMO

Molybdenum cofactor is essential for the activity of multiple enzymes including xanthine dehydrogenase. Molybdenum cofactor deficiencies are rare inborn errors of metabolism. Clinically, they present with intractable seizures, axial hypotonia, and hyperekplexia. They further develop cerebral atrophy, microcephaly, global developmental delay and ectopia lentis. We report a 5-year-old female with clinically, biochemically and genetically confirmed molybdenum cofactor deficiency type B due to compound heterozygous pathogenic variants in the molybdenum cofactor synthesis 2 gene found on whole exome sequencing. The xanthine stones were a key clue towards diagnosis. No mutation was detected in XDH gene. Implementation of a low-purine diet, urine alkalization and hydration lead to a near complete decrease in stone burden. The patient received pyridoxine supplementation with improvement in energy levels and attentiveness. Despite reports of high mortality at a young age, our patient was 9 years old at the time of this writing. Molybdenum cofactor deficiencies should be considered in neonates with early-onset seizures, hypotonia, and feeding difficulties. Screening with serum uric acid levels and empiric treatment may be considered while awaiting genetic results.


Assuntos
Erros Inatos do Metabolismo dos Metais/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/etiologia , Criança , Humanos , Erros Inatos do Metabolismo dos Metais/complicações
19.
Biomedicines ; 9(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34829959

RESUMO

Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the two-step reaction from hypoxanthine to xanthine and from xanthine to uric acid in purine metabolism. XOR generally carries dehydrogenase activity (XDH) but is converted into an oxidase (XO) under various pathophysiologic conditions. The complex structure and enzymatic function of XOR have been well investigated by mutagenesis studies of mammalian XOR and structural analysis of XOR-inhibitor interactions. Three XOR inhibitors are currently used as hyperuricemia and gout therapeutics but are also expected to have potential effects other than uric acid reduction, such as suppressing XO-generating reactive oxygen species. Isolated XOR deficiency, xanthinuria type I, is a good model of the metabolic effects of XOR inhibitors. It is characterized by hypouricemia, markedly decreased uric acid excretion, and increased serum and urinary xanthine concentrations, with no clinically significant symptoms. The pathogenesis and relationship between mutations and XOR activity in xanthinuria are useful for elucidating the biological role of XOR and the details of the XOR reaction process. In this review, we aim to contribute to the basic science and clinical aspects of XOR by linking the mutations in xanthinuria to structural studies, in order to understand the function and reaction mechanism of XOR in vivo.

20.
Biomedicines ; 9(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34356852

RESUMO

Classical xanthinuria is a rare autosomal recessive metabolic disorder caused by variants in the XDH (type I) or MOCOS (type II) genes. Thirteen Israeli kindred (five Jewish and eight Arab) and two isolated cases from Germany were studied between the years 1997 and 2013. Four and a branch of a fifth of these families were previously described. Here, we reported the demographic, clinical, molecular and biochemical characterizations of the remaining cases. Seven out of 20 affected individuals (35%) presented with xanthinuria-related symptoms of varied severity. Among the 10 distinct variants identified, six were novel: c.449G>T (p.(Cys150Phe)), c.1434G>A (p.(Trp478*)), c.1871C>G (p.(Ser624*)) and c.913del (p.(Leu305fs*1)) in the XDH gene and c.1046C>T (p.(Thr349Ileu)) and c.1771C>T (p.(Pro591Ser)) in the MOCOS gene. Heterologous protein expression studies revealed that the p.Cys150Phe variant within the Fe/S-I cluster-binding site impairs XDH biogenesis, the p.Thr349Ileu variant in the NifS-like domain of MOCOS affects protein stability and cysteine desulfurase activity, while the p.Pro591Ser and a previously described p.Arg776Cys variant in the C-terminal domain affect Molybdenum cofactor binding. Based on the results of haplotype analyses and historical genealogy findings, the potential dispersion of the identified variants is discussed. As far as we are aware, this is the largest cohort of xanthinuria cases described so far, substantially expanding the repertoire of pathogenic variants, characterizing structurally and functionally essential amino acid residues in the XDH and MOCOS proteins and addressing the population genetic aspects of classical xanthinuria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA