Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(16-17): 6463-6475, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34357428

RESUMO

Bioremediation is becoming an increasingly popular approach for the remediation of sites contaminated with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Multiple lines of evidence are often needed to assess the success of such approaches, with molecular studies frequently providing important information on the abundance of key biodegrading species. Towards this goal, the current study utilized shotgun sequencing to determine the abundance and diversity of functional genes (xenA, xenB, xplA, diaA, pnrB, nfsI) and species previously associated with RDX biodegradation in groundwater before and after biostimulation at an RDX-contaminated Navy Site. For this, DNA was extracted from four and seven groundwater wells pre- and post-biostimulation, respectively. From a set of 65 previously identified RDX degraders, 31 were found within the groundwater samples, with the most abundant species being Variovorax sp. JS1663, Pseudomonas fluorescens, Pseudomonas putida, and Stenotrophomonas maltophilia. Further, 9 RDX-degrading species significantly (p<0.05) increased in abundance following biostimulation. Both the sequencing data and qPCR indicated that xenA and xenB exhibited the highest relative abundance among the six genes. Several genes (diaA, nsfI, xenA, and pnrB) exhibited higher relative abundance values in some wells following biostimulation. The study provides a comprehensive approach for assessing biomarkers during RDX bioremediation and provides evidence that biostimulation generated a positive impact on a set of key species and genes. KEY POINTS: • A co-occurrence network indicated diverse RDX degraders. • >30 RDX-degrading species were detected. • Nine RDX-degrading species increased following biostimulation. • Sequencing and high-throughput qPCR indicated that xenA and xenB were most abundant.


Assuntos
Água Subterrânea , Pseudomonas fluorescens , Biodegradação Ambiental , Triazinas
2.
Appl Microbiol Biotechnol ; 103(17): 7161-7175, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31352507

RESUMO

The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a contaminant at many military sites. RDX bioremediation as a clean-up approach has been gaining popularity because of cost benefits compared to other methods. RDX biodegradation has primarily been linked to six functional genes (diaA, nfsI, pnrB, xenA, xenB, xplA). However, current methods for gene quantification have the risk of false negative results because of low theoretical primer coverage. To address this, the current study designed new primer sets using the EcoFunPrimer tool based on sequences collected by the Functional Gene Pipeline and Repository and these were verified based on residues and motifs. The primers were also designed to be compatible with the SmartChip Real-Time PCR system, a massively parallel singleplex PCR platform (high throughput qPCR), that enables quantitative gene analysis using 5,184 simultaneous reactions on a single chip with low volumes of reagents. This allows multiple genes and/or multiple primer sets for a single gene to be used with multiple samples. Following primer design, the six genes were quantified in RDX-contaminated groundwater (before and after biostimulation), RDX-contaminated sediment, and uncontaminated samples. The final 49 newly designed primer sets improved upon the theoretical coverage of published primer sets, and this corresponded to more detections in the environmental samples. All genes, except diaA, were detected in the environmental samples, with xenA and xenB being the most predominant. In the sediment samples, nfsI was the only gene detected. The new approach provides a more comprehensive tool for understanding RDX biodegradation potential at contaminated sites.


Assuntos
Proteínas de Bactérias/genética , Poluentes Ambientais/metabolismo , Substâncias Explosivas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Triazinas/metabolismo , Proteínas de Bactérias/química , Biodegradação Ambiental , Primers do DNA/genética , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia
3.
Appl Microbiol Biotechnol ; 100(16): 7297-309, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27118012

RESUMO

The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has long been recognized as a problematic environmental pollutant, and efforts to remediate contaminated soils, sediments, and groundwater have been going on for decades. In recent years, much interest has focused on using bioremediation to clean up these sites. The current study investigated the microorganisms (16S rRNA genes, Illumina) and functional genes (xenA, xenB, and xplA) linked to RDX biodegradation in microcosms composed of sediment or groundwater from two Navy sites. For this, experiments included sediment samples from three depths (5 to 30 ft) from two wells located in one Navy site. In addition, the groundwater upstream and downstream of an emulsified oil biobarrier was examined from another Navy site. Further, for the groundwater experiments, the effect of glucose addition was explored. For the sediment experiments, the most enriched phylotypes during RDX degradation varied over time, by depth and well locations. However, several trends were noted, including the enrichment of Pseudomonas, Rhodococcus, Arthrobacter, and Sporolactobacillus in the sediment microcosms. For the groundwater-based experiments, Pseudomonas, unclassified Rhodocyclaceae, Sphingomonas, and Rhodococcus were also highly abundant during RDX degradation. The abundance of both xplA and xenA significantly increased during RDX degradation compared to the control microcosms for many treatments (both groundwater and sediment microcosms). In a limited number of microcosms, the copy number of the xenB gene increased. Phylotype data were correlated with functional gene data to highlight potentially important biomarkers for RDX biodegradation at these two Navy sites.


Assuntos
Substâncias Explosivas/metabolismo , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Instalações Militares , Poluentes do Solo/metabolismo , Triazinas/metabolismo , Poluentes Químicos da Água/metabolismo , Arthrobacter/isolamento & purificação , Arthrobacter/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Flavoproteínas/genética , Oxirredutases/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo , Rhodocyclaceae/isolamento & purificação , Rhodocyclaceae/metabolismo , Sphingomonas/isolamento & purificação , Sphingomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA