Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
J Biol Chem ; 300(11): 107794, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305955

RESUMO

Many bioactive proteins interact with collagen, recognizing amino acid sequences displayed on the triple helix. We report here a selection strategy to obtain triple-helical peptides that interact with the proteins from a combinatorial random library constructed in yeast cells. This system enables us to select them using the standard two-hybrid protocol, detecting interactions between triple-helical peptides and target proteins fused to the GAL4-activating and binding domains, respectively. The library was constructed having triple-helical peptides with a "host-guest" design in which host helix-stabilizing regions flanked guest random sequences. Using this system, we selected peptides that bind to pigment epithelium-derived factor (PEDF), a collagen-binding protein that shows anti-angiogenic and neurotrophic activities, from the libraries. Two-step selections from the total random library and subsequently from the second focused library yielded new PEDF-binding sequences that exhibited a comparable affinity to or more potent than that of the native PEDF-binding sequence in collagen. The obtained sequences also contained a variant of the PEDF-binding motif that did not match the known motif identified from the native collagen sequences. This combinatorial library system allows the chemical space of triple-helical peptides to be screened more widely than that found in native collagen, thus increasing the expectation of obtaining more specific and high-affinity peptides.

2.
J Biol Chem ; 300(9): 107725, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39214300

RESUMO

Mutations of human TBC1D24 are associated with deafness, epilepsy, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, cognitive disability, and seizures). The causal relationships between TBC1D24 variants and the different clinical phenotypes are not understood. Our hypothesis is that phenotypic heterogeneity of missense mutations of TBC1D24 results, in part, from perturbed binding of different protein partners. To discover novel protein partners of TBC1D24, we conducted yeast two-hybrid (Y2H) screen using mouse full-length TBC1D24 as bait. Kidney and brain protein (KIBRA), a scaffold protein encoded by Wwc1, was identified as a partner of TBC1D24. KIBRA functions in the Hippo signaling pathway and is important for human cognition and memory. The TBC1D24 TLDc domain binds to KIBRA full-length and to its C2 domain, confirmed by Y2H assays. No interaction was detected with Y2H assays between the KIBRA C2 domain and TLDc domains of NCOA7, MEAK7, and OXR1. Moreover, the C2 domains of other WWC family proteins do not interact with the TLDc domain of TBC1D24, demonstrating specificity. The mRNAs encoding TBC1D24 and KIBRA proteins in mouse are coexpressed at least in a subset of hippocampal cells indicating availability to interact in vivo. As two epilepsy-associated recessive variants (Gly511Arg and Ala515Val) in the TLDc domain of human TBC1D24 disrupt the interaction with the human KIBRA C2 domain, this study reveals a pathogenic mechanism of TBC1D24-associated epilepsy, linking the TBC1D24 and KIBRA pathways. The interaction of TBC1D24-KIBRA is physiologically meaningful and necessary to reduce the risk of epilepsy.


Assuntos
Epilepsia , Proteínas Ativadoras de GTPase , Peptídeos e Proteínas de Sinalização Intracelular , Mutação de Sentido Incorreto , Animais , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Camundongos , Humanos , Epilepsia/genética , Epilepsia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Domínios Proteicos , Células HEK293 , Ligação Proteica , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Perda Auditiva Neurossensorial , Deficiência Intelectual , Unhas Malformadas , Anormalidades Craniofaciais
3.
J Biol Chem ; 299(12): 105446, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949230

RESUMO

Increasing evidence suggests that aberrant regulation of sortilin ectodomain shedding can contribute to amyloid-ß pathology and frontotemporal dementia, although the mechanism by which this occurs has not been elucidated. Here, we probed for novel binding partners of sortilin using multiple and complementary approaches and identified two proteins of the neuron-specific gene (NSG) family, NSG1 and NSG2, that physically interact and colocalize with sortilin. We show both NSG1 and NSG2 induce subcellular redistribution of sortilin to NSG1- and NSG2-enriched compartments. However, using cell surface biotinylation, we found only NSG1 reduced sortilin cell surface expression, which caused significant reductions in uptake of progranulin, a molecular determinant for frontotemporal dementia. In contrast, we demonstrate NSG2 has no effect on sortilin cell surface abundance or progranulin uptake, suggesting specificity for NSG1 in the regulation of sortilin cell surface expression. Using metalloproteinase inhibitors and A disintegrin and metalloproteinase 10 KO cells, we further show that NSG1-dependent reduction of cell surface sortilin occurred via proteolytic processing by A disintegrin and metalloproteinase 10 with a concomitant increase in shedding of sortilin ectodomain to the extracellular space. This represents a novel regulatory mechanism for sortilin ectodomain shedding that is regulated in a neuron-specific manner. Furthermore, this finding has implications for the development of strategies for brain-specific regulation of sortilin and possibly sortilin-driven pathologies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Transporte , Metaloproteases , Proteínas do Tecido Nervoso , Neurônios , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Biotinilação , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/metabolismo , Desintegrinas/deficiência , Desintegrinas/genética , Desintegrinas/metabolismo , Demência Frontotemporal/metabolismo , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Progranulinas/metabolismo , Ligação Proteica , Proteólise , Membrana Celular/metabolismo , Peptídeos beta-Amiloides/metabolismo
4.
Mol Plant Microbe Interact ; 37(3): 227-231, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37831963

RESUMO

The multifaceted role of pathogen-encoded effectors in plant-pathogen interactions is complex and not fully understood. Effectors operate within intricate host environments, interacting with host proteins and other effectors to modulate virulence. The complex interplay between effectors raises the concept of metaeffectors, wherein some effectors regulate the activity of others. While previous research has demonstrated the importance of effector repertoires in pathogen virulence, only a limited number of studies have investigated the interactions between these effectors. This study explores the interactions among Phakopsora pachyrhizi effector candidates (PpECs). P. pachyrhizi haustorial transcriptome analysis identified a collection of predicted PpECs. Among these, PpEC23 was found to interact with PpEC48, prompting further exploration into their potential interaction with other effectors. Here, we utilized a yeast two-hybrid screen to explore protein-protein interactions between PpECs. A split-luciferase complementation assay also demonstrated that these interactions could occur within soybean cells. Interestingly, PpEC48 displayed the ability to interact with several small cysteine-rich proteins (SCRPs), suggesting its affinity for this specific class of effectors. We show that these interactions involve a histidine-rich domain within PpEC48, emphasizing the significance of structural motifs in mediating effector interactions. The unique nature of PpEC48, showing no sequence matches in other organisms, suggests its relatively recent evolution and potential orphan gene status. Our work reveals insights into the intricate network of interactions among P. pachyrhizi effector-effector interactions. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Phakopsora pachyrhizi , Phakopsora pachyrhizi/metabolismo , Doenças das Plantas , Glycine max , Perfilação da Expressão Gênica , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética
5.
BMC Genomics ; 25(1): 823, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223495

RESUMO

BACKGROUND: The Flavonoid 3'-hydroxylase gene(F3'H) is an important structural gene in the anthocyanin synthesis pathway of plants, which has been proven to be involved in the color formation of organs such as leaves, flowers, and fruits in many plants. However, the mechanism and function in barley are still unclear. RESULTS: In order to explore the molecular mechanism of the grain color formation of purple qingke, we used the cultivated qingke variety Nierumzha (purple grain) and the selected qingke variety Kunlun 10 (white grain) to conduct transcriptomic sequencing at the early milk, late milk and soft dough stage. Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct weighted gene co-expression network related to grain color formation, and three key modules (brown, yellow, and turquoise modules) related to purple grain of qingke were selected. F3'H (HORVU1Hr1G094880) was selected from the hub gene of the module for the yeast library, yeast two-hybrid (Y2H), subcellular localization and other studies. It was found that in purple qingke, HvnF3'H mainly distributed in the cytoplasm and cell membrane and interacted with several stress proteins such as methyltransferase protein and zinc finger protein. CONCLUSIONS: The results of this study provide reference for the regulation mechanism of anthocyanin-related genes in purple grain qingke.


Assuntos
Antocianinas , Sistema Enzimático do Citocromo P-450 , Regulação da Expressão Gênica de Plantas , Antocianinas/biossíntese , Antocianinas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Redes Reguladoras de Genes , Pigmentação/genética
6.
Biochem Biophys Res Commun ; 733: 150734, 2024 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-39332156

RESUMO

Pseudo-Response Regulator (PRR) proteins constitute a fundamental set of circadian clock components in plants. PRRs have an amino acid sequence stretch with similarity to the receiver (REC) domain of response regulators (RRs) in the Multi-Step Phosphorelay (MSP). However, it has never been elucidated whether PRRs interact with Histidine-containing Phosphotransfer (HPt) proteins, which transfer a phosphate to RRs. Here, we studied whether PRRs interact with HPts in the moss Physcomitrium patens by the Yeast Two-Hybrid system and Bimolecular Fluorescence Complementation. P. patens PRR1/2/3 interacted with HPt1/2 in the nucleus, but not with HPt3, suggesting that P. patens PRRs function as authentic RRs. We discuss these results in relation to the evolution and diversity of the plant circadian clocks.


Assuntos
Bryopsida , Núcleo Celular , Proteínas de Plantas , Bryopsida/metabolismo , Bryopsida/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Núcleo Celular/metabolismo , Relógios Circadianos/fisiologia , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Histidina/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Regulação da Expressão Gênica de Plantas
7.
Mol Biol Rep ; 51(1): 642, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727866

RESUMO

BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.


Assuntos
Vírus da Influenza A , Proteínas de Transporte da Membrana Mitocondrial , Replicação Viral , Humanos , Regulação para Baixo , Células HEK293 , Células HeLa , Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ligação Proteica , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
8.
Med Vet Entomol ; 38(1): 48-58, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37807654

RESUMO

Dengue virus (DENV) is an arbovirus that comprises four antigenically different serotypes. Aedes aegypti (Diptera: Culicidae) acts as the principal vector for DENV transmission, and vector control is crucial for dengue fever epidemic management. To design effective vector control strategies, a comprehensive understanding of the insect vector and virus interaction is required. Female Ae. aegypti ingests DENV during the acquisition of a blood meal from an infected human. DENV enters the insect midgut, replicates inside it and reaches the salivary gland for transmitting DENV to healthy humans during the subsequent feeding cycles. DENV must interact with the proteins present in the midgut and salivary glands to gain entry and accomplish successful replication and transmission. Ae. aegypti midgut cDNA library was prepared, and yeast two-hybrid screening was performed against the envelope protein domain III (EDIII) protein of DENV-2. The polyubiquitin protein was selected from the various candidate proteins for subsequent analysis. Polyubiquitin gene was amplified, and the protein was purified in a heterologous expression system for in vitro interaction studies. In vitro pull-down assay presented a clear interaction between polyubiquitin protein and EDIII. To further confirm this interaction, a dot blot assay was employed, and polyubiquitin protein was found to interact with DENV particles. Our results enable us to suggest that polyubiquitin plays an important role in DENV infection within mosquitoes.


Assuntos
Aedes , Vírus da Dengue , Dengue , Humanos , Feminino , Animais , Vírus da Dengue/genética , Dengue/veterinária , Proteínas do Envelope Viral , Poliubiquitina , Mosquitos Vetores
9.
Biochem J ; 480(6): 421-432, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36896918

RESUMO

Chemical tools to control the activities and interactions of chromatin components have broad impact on our understanding of cellular and disease processes. It is important to accurately identify their molecular effects to inform clinical efforts and interpretations of scientific studies. Chaetocin is a widely used chemical that decreases H3K9 methylation in cells. It is frequently attributed as a specific inhibitor of the histone methyltransferase activities of SUV39H1/SU(VAR)3-9, although prior observations showed chaetocin likely inhibits methyltransferase activity through covalent mechanisms involving its epipolythiodixopiperazine disulfide 'warhead' functionality. The continued use of chaetocin in scientific studies may derive from the net effect of reduced H3K9 methylation, irrespective of a direct or indirect mechanism. However, there may be other molecular impacts of chaetocin on SUV39H1 besides inhibition of H3K9 methylation levels that could confound the interpretation of past and future experimental studies. Here, we test a new hypothesis that chaetocin may have an additional downstream impact aside from inhibition of methyltransferase activity. Using a combination of truncation mutants, a yeast two-hybrid system, and direct in vitro binding assays, we show that the human SUV39H1 chromodomain (CD) and HP1 chromoshadow domain (CSD) directly interact. Chaetocin inhibits this binding interaction through its disulfide functionality with some specificity by covalently binding with the CD of SUV39H1, whereas the histone H3-HP1 interaction is not inhibited. Given the key role of HP1 dimers in driving a feedback cascade to recruit SUV39H1 and to establish and stabilize constitutive heterochromatin, this additional molecular consequence of chaetocin should be broadly considered.


Assuntos
Metiltransferases , Proteínas Repressoras , Humanos , Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
10.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884724

RESUMO

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Assuntos
Cardiopatias Congênitas , Animais , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Modelos Animais de Doenças , Camundongos , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Cultura de Células/métodos
11.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126014

RESUMO

Stem strength plays a crucial role in the growth and development of plants, as well as in their flowering and fruiting. It not only impacts the lodging resistance of crops, but also influences the ornamental value of ornamental plants. Stem development is closely linked to stem strength; however, the roles of the SPL transcription factors in the stem development of herbaceous peony (Paeonia lactiflora Pall.) are not yet fully elucidated. In this study, we obtained and cloned the full-length sequence of PlSPL14, encoding 1085 amino acids. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of PlSPL14 gradually increased with the stem development of P. lactiflora and was significantly expressed in vascular bundles. Subsequently, utilizing the techniques of virus-induced gene silencing (VIGS) and heterologous overexpression in tobacco (Nicotiana tabacum L.), it was determined that PlSPL14-silenced P. lactiflora had a thinner xylem thickness, a decreased stem diameter, and weakened stem strength, while PlSPL14-overexpressing tobacco resulted in a thicker xylem thickness, an increased stem diameter, and enhanced stem strength. Further screening of the interacting proteins of PlSPL14 using a yeast two-hybrid (Y2H) assay revealed an interactive relationship between PlSPL14 and PlSLR1 protein, which acts as a negative regulator of gibberellin (GA). Additionally, the expression level of PlSLR1 gradually decreased during the stem development of P. lactiflora. The above results suggest that PlSPL14 may play a positive regulatory role in stem development and act in the xylem, making it a potential candidate gene for enhancing stem straightness in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Paeonia , Proteínas de Plantas , Caules de Planta , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Paeonia/genética , Paeonia/crescimento & desenvolvimento , Paeonia/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Xilema/genética , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Clonagem Molecular , Filogenia
12.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674041

RESUMO

Cold stress adversely impacts grape growth, development, and yield. Therefore, improving the cold tolerance of grape is an urgent task of grape breeding. The Jasmonic acid (JA) pathway responsive gene JAZ plays a key role in plant response to cold stress. However, the role of JAZ in response to low temperatures in grape is unclear. In this study, VvJAZ13 was cloned from the 'Pinot Noir' (Vitis vinefera cv. 'Pinot Noir') grape, and the potential interacting protein of VvJAZ13 was screened by yeast two-hybrid (Y2H). The function of VvJAZ13 under low temperature stress was verified by genetic transformation. Subcellular localization showed that the gene was mainly expressed in cytoplasm and the nucleus. Y2H indicated that VvF-box, VvTIFY5A, VvTIFY9, Vvbch1, and VvAGD13 may be potential interacting proteins of VvJAZ13. The results of transient transformation of grape leaves showed that VvJAZ13 improved photosynthetic capacity and reduced cell damage by increasing maximum photosynthetic efficiency of photosystem II (Fv/Fm), reducing relative electrolyte leakage (REL) and malondialdehyde (MDA), and increasing proline content in overexpressed lines (OEs), which played an active role in cold resistance. Through the overexpression of VvJAZ13 in Arabidopsis thaliana and grape calli, the results showed that compared with wild type (WT), transgenic lines had higher antioxidant enzyme activity and proline content, lower REL, MDA, and hydrogen peroxide (H2O2) content, and an improved ability of scavenging reactive oxygen species. In addition, the expression levels of CBF1-2 and ICE1 genes related to cold response were up-regulated in transgenic lines. To sum up, VvJAZ13 is actively involved in the cold tolerance of Arabidopsis and grape, and has the potential to be a candidate gene for improving plant cold tolerance.


Assuntos
Arabidopsis , Resposta ao Choque Frio , Proteínas de Plantas , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Vitis/genética , Vitis/metabolismo
13.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674058

RESUMO

In this study, we obtained and cloned VvSnRK2.7 by screening transcriptomic data to investigate the function of the grape sucrose non-fermenting kinase 2 (SnRK2) gene under stress conditions. A yeast two-hybrid (Y2H) assay was used to further screen for interaction proteins of VvSnRK2.7. Ultimately, VvSnRK2.7 was heterologously expressed in Arabidopsis thaliana, and the relative conductivity, MDA content, antioxidant enzyme activity, and sugar content of the transgenic plants were determined under drought treatment. In addition, the expression levels of VvSnRK2.7 in Arabidopsis were analyzed. The results showed that the VvSnRK2.7-EGFP fusion protein was mainly located in the cell membrane and nucleus of tobacco leaves. In addition, the VvSnRK2.7 protein had an interactive relationship with the VvbZIP protein during the Y2H assay. The expression levels of VvSnRK2.7 and the antioxidant enzyme activities and sugar contents of the transgenic lines were higher than those of the wild type under drought treatment. Moreover, the relative conductivity and MDA content were lower than those of the wild type. The results indicate that VvSnRK2.7 may activate the enzyme activity of the antioxidant enzyme system, maintain normal cellular physiological metabolism, stabilize the berry sugar metabolism pathway under drought stress, and promote sugar accumulation to improve plant resistance.


Assuntos
Arabidopsis , Resistência à Seca , Proteínas de Plantas , Vitis , Arabidopsis/genética , Arabidopsis/fisiologia , Resistência à Seca/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/genética , Vitis/genética
14.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791467

RESUMO

Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the E. coli cytoplasm of the adenylate cyclase of Bordetella pertussis, should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems. A comprehensive mutational analysis of PipX and bacterial two-hybrid assays were performed to compare the outcomes between yeast and bacterial systems. We detected interactions that were previously recorded in the yeast two-hybrid system as negative, as well as a "false positive", the self-interaction of PipX, which is rather an indirect interaction that is dependent on PII homologues from the E. coli host, a result confirmed by Western blot analysis with relevant PipX variants. This is, to our knowledge, the first report of the molecular basis of a false positive in the bacterial two-hybrid system.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas PII Reguladoras de Nitrogênio , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/metabolismo , Cianobactérias/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
15.
Proteins ; 91(9): 1235-1244, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37265372

RESUMO

The human C14orf166 protein, also known as RNA transcription, translation, and transport factor, shows positive modulatory activity on the cellular RNA polymerase II enzyme. This protein is a component of the tRNA-splicing ligase complex and is involved in RNA metabolism. It also functions in the nucleo-cytoplasmic transport of RNA molecules. The C14orf166 protein has been reported to be associated with some types of cancer. It has been shown that the C14orf166 protein binds to the influenza A virus RNA polymerase PA subunit and has a stimulating effect on viral replication. In this study, candidate interactor proteins for influenza A virus PA protein were screened with a Y2H assay using HEK293 Matchmaker cDNA. The C14orf166 protein fragments in different sizes were found to interact with the PA. The three-dimensional structures of the viral PA and C14orf166 proteins interacting with the PA were generated using the I-TASSER algorithm. The interaction models between these proteins were predicted with the ClusPro protein docking algorithm and analyzed with PyMol software. The results revealed that the carboxy-terminal end of the C14orf166 protein is involved in this interaction, and it is highly possible that it binds to the carboxy-terminal of the PA protein. Although amino acid residues in the interaction area of the PA protein with the C14orf166 showed distribution from 450th to 700th position, the intense interaction region was revealed to be at amino acid positions 610-630.


Assuntos
Vírus da Influenza A , Transativadores , Proteínas Virais , Humanos , Aminoácidos , Células HEK293 , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Influenza Humana , RNA , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Virais/química , Replicação Viral , Transativadores/metabolismo
16.
Plant Mol Biol ; 111(1-2): 57-72, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36207656

RESUMO

KEY MESSAGE: 1. Purple flowering stalk (Brassica campestris L. ssp. chinensis L. var. purpurea Bailey) is a crop with the high-level anthocyanin. 2. Increased abundance of LBGs promoted the synthesis of anthocyanin. 3. TTG2 (WRKY) interacted with TTG1 (WD40), probably regulating anthocyanin accumulation by shaping a MBWW complex. Brassica crops are a class of nutrient-rich vegetables. Here, two Brassica Crops-Flowering Stalk cultivars, purple flowering stalk (Brassica campestris L. var. purpurea Bailey) and pakchoi (Brassica campestris ssp. chinensis var. communis) were investigated. HPLC-ESI-MS/MS analysis demonstrated that Cy 3-p-coumaroylsophoroside-5-malonylglucoside and Cy 3-diferuloylsophoroside-5-malonylglucoside were identified as the major anthocyanin in peel of purple flowering stalk. The transcript level of structural genes including C4H, CHS, F3H, DFR, ANS and UFGT, and regulatory genes such as TT8, TTG1, Bra004162, Bra001917 and TTG2 in peel of purple flowering stalk were significantly higher than that in peel of pakchoi. In addition, the TTG2(WRKY) interacted only with TTG1(WD40) and the interaction between TT8 (bHLH) and TTG1/Bra004162(MYB)/Bra001917(MYB) were identified. Else, the WD40-WRKY complex (TTG1-TTG2) could activate the transcript of TT12. Our study laid a foundation for the research on the anthocyanin accumulation in Brassica crops.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Antocianinas/genética , Espectrometria de Massas em Tandem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Curr Issues Mol Biol ; 45(10): 8215-8226, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37886961

RESUMO

TNFAIP1 regulates cellular biological functions, including DNA replication, DNA repair, and cell cycle, by binding to target proteins. Identification of Tnfaip1-interacting proteins contributes to the understanding of the molecular regulatory mechanisms of their biological functions. In this study, 48 hpf, 72 hpf, and 96 hpf wild-type zebrafish embryo mRNAs were used to construct yeast cDNA library. The library titer was 1.12 × 107 CFU/mL, the recombination rate was 100%, and the average length of the inserted fragments was greater than 1000 bp. A total of 43 potential interacting proteins of Tnfaip1 were identified using zebrafish Tnfaip1 as a bait protein. Utilizing GO functional annotation and KEGG signaling pathway analysis, we found that these interacting proteins are mainly involved in translation, protein catabolic process, ribosome assembly, cytoskeleton formation, amino acid metabolism, and PPAR signaling pathway. Further yeast spotting analyses identified four interacting proteins of Tnfaip1, namely, Ubxn7, Tubb4b, Rpl10, and Ybx1. The Tnfaip1-interacting proteins, screened from zebrafish embryo cDNA in this study, increased our understanding of the network of Tnfaip1-interacting proteins during the earliest embryo development and provided a molecular foundation for the future exploration of tnfaip1's biological functions.

18.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782128

RESUMO

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33367498

RESUMO

Mapping protein-protein interactions at a proteome scale is critical to understanding how cellular signaling networks respond to stimuli. Since eukaryotic genomes encode thousands of proteins, testing their interactions one-by-one is a challenging prospect. High-throughput yeast-two hybrid (Y2H) assays that employ next-generation sequencing to interrogate complementary DNA (cDNA) libraries represent an alternative approach that optimizes scale, cost and effort. We present NGPINT, a robust and scalable software to identify all putative interactors of a protein using Y2H in batch culture. NGPINT combines diverse tools to align sequence reads to target genomes, reconstruct prey fragments and compute gene enrichment under reporter selection. Central to this pipeline is the identification of fusion reads containing sequences derived from both the Y2H expression plasmid and the cDNA of interest. To reduce false positives, these fusion reads are evaluated as to whether the cDNA fragment forms an in-frame translational fusion with the Y2H transcription factor. NGPINT successfully recognized 95% of interactions in simulated test runs. As proof of concept, NGPINT was tested using published data sets and it recognized all validated interactions. NGPINT can process interaction data from any biosystem with an available genome or transcriptome reference, thus facilitating the discovery of protein-protein interactions in model and non-model organisms.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mapas de Interação de Proteínas , Análise de Sequência de Proteína , Software , Técnicas do Sistema de Duplo-Híbrido , Humanos
20.
Mol Syst Biol ; 18(3): e10820, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35225431

RESUMO

Protein kinases play an important role in cellular signaling pathways and their dysregulation leads to multiple diseases, making kinases prime drug targets. While more than 500 human protein kinases are known to collectively mediate phosphorylation of over 290,000 S/T/Y sites, the activities have been characterized only for a minor, intensively studied subset. To systematically address this discrepancy, we developed a human kinase array in Saccharomyces cerevisiae as a simple readout tool to systematically assess kinase activities. For this array, we expressed 266 human kinases in four different S. cerevisiae strains and profiled ectopic growth as a proxy for kinase activity across 33 conditions. More than half of the kinases showed an activity-dependent phenotype across many conditions and in more than one strain. We then employed the kinase array to identify the kinase(s) that can modulate protein-protein interactions (PPIs). Two characterized, phosphorylation-dependent PPIs with unknown kinase-substrate relationships were analyzed in a phospho-yeast two-hybrid assay. CK2α1 and SGK2 kinases can abrogate the interaction between the spliceosomal proteins AAR2 and PRPF8, and NEK6 kinase was found to mediate the estrogen receptor (ERα) interaction with 14-3-3 proteins. The human kinase yeast array can thus be used for a variety of kinase activity-dependent readouts.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA