RESUMO
As a potential candidate for grid-scale energy storage technology, aqueous Zn-ion batteries (ZIBs) have attracted considerable attention due to their intrinsic safety, environmental friendliness, and ease of fabrication. Nevertheless, the road to industry for this technique is hindered by serious issues, including undesired side reactions, random growth of the Zn dendrites, electrode passivation, and anode corrosion, which are associated with the high reactivity of water molecules during the electrochemical reactions. These challenges are strongly dependent on electrolyte solvation chemistry (ESC), which subsequently determines the electrochemical behavior of the metal ions and water molecules on the electrode surface. In this work, a comprehensive understanding of optimized ESC with specified functional groups on the mixing agents to stabilize the Zn anode is provided. First, the challenges facing the ZIBs and their chemical principles are outlined. Specific attention is paid to the working principles of the mixing agents with different functional groups. Then the recent progress is summarized and compared. Finally, perspectives on future research for the aqueous Zn batteries are presented from the point of view.
RESUMO
The practical application of aqueous zinc (Zn) metal batteries (ZMBs) is hindered by the complicated hydrogen evolution, passivation reactions, and dendrite growth of Zn metal anodes. Here, an ion-pumping quasi-solid electrolyte (IPQSE) with high Zn2+ transport kinetics enabled by the electrokinetic phenomena to realize high-performance quasi-solid state Zn metal batteries (QSSZMBs) is reported. The IPQSE is prepared through the in situ ring-opening polymerization of tetramethylolmethane-tri-ß-aziridinylpropionate in the aqueous electrolyte. The porous polymer framework with high zeta potential provides the IPQSE with an electrokinetic ion-pumping feature enabled by the electrokinetic effects (electro-osmosis and electrokinetic surface conduction), which significantly accelerates the Zn2+ transport, reduces the concentration polarization and overcomes the diffusion-limited current. Moreover, the Zn2+ affinity of the polymer and hydrogen bonding interactions in the IPQSE changes the Zn2+ coordination environment and reduces the amount of free H2O, which lowers the H2O activity and inhibits H2O-induced side reactions. Consequently, the highly reversible and stable Zn metal anodes are achieved. The assembled QSSZMBs based on the IPQSE display excellent cycling stability with high capacity retention and Coulombic efficiency. The high-performance quasi-solid state Zn metal pouch cells are demonstrated, showing great promise for the practical application of the IPQSE.
RESUMO
Aqueous zinc-ion batteries (AZIBs) are considered to be a rising star in the large-scale energy storage area because of their low cost and environmental friendliness properties. However, the limited electrochemical performance of the cathode and severe zinc dendrite of the anode severely hinder the practical application of AZIBs. Herein, a novel 3D interconnected VS2 â¥V4 C3 Tx heterostructure material is prepared via one-step solvothermal method. Morphological and structural characterizations show that VS2 nanosheets are uniformly and dispersedly distributed on the surface of the V4 C3 MXene substrate, which can effectively suppress volume change of the VS2 . Owing to the open heterostructure along with the high conductivity of V4 C3 MXene, the VS2 â¥V4 C3 Tx cathode shows a high specific capacity of 273.9 mAh g-1 at 1 A g-1 and an excellent rate capability of 143.2 mAh g-1 at 20 A g-1 . The V4 C3 MXene can also effectively suppress zinc dendrite growth when used as protective layer for the Zn anode, making the V4 C3 Tx @Zn symmetric cell with a stable voltage profile for ≈1700 h. Benefitting from the synergistic modification effect of V4 C3 MXene on both the cathode and anode, the VS2 â¥V4 C3 Tx ||V4 C3 Tx @Zn battery exhibits a long cycling lifespan of 5000 cycles with a capacity of 157.1 mAh g-1 at 5A g-1 .
RESUMO
Aqueous zinc batteries have emerged as promising energy storage devices due to their safety and low cost. However, they face challenges such as anodic dendrite formation and cathodic compound dissolution. Here, we present the development of a polymer-matrixed zeolite separator (SZ) by synthesizing zeolite materials on a flexible polymeric membrane. This separator acts as an effective ionic barrier, preventing the leaching and shuttling of vanadium from the cathode, while significantly inhibiting the formation of by-products and zinc dendrites. The SZ cells demonstrate stable operation for more than 400â cycles at 0.5â A g-1 , with an initial capacity of 375.4â mAh g-1 , and over 10,000â cycles at 15â A g-1 . Notably, when pre-anchored with vanadium ions, the SZ-V cells exhibited excellent capacity retention of up to 94.6 % over 1000â cycles. The SZ separator featuring an ion barrier represents a crucial advancement towards the commercialization of zinc storage devices.
RESUMO
Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention due to their low cost and environmental friendliness. However, the rampant dendrite growth and severe side reactions during plating/stripping on the surface of zinc (Zn) anode hinder the practicability of AZIBs. Herein, an effective and non-toxic cationic electrolyte additive of Rb2 SO4 is proposed to address the issues. The large cation of Rb+ is preferentially adsorbed on the surface of Zn metal to induce a strong shielding effect for realizing the lateral deposition of Zn2+ ions along the Zn surface and isolating water from Zn metal to effectively inhibit side reactions. Consequently, the Zn||Zn symmetric cell with the addition of 1.5 mm Rb2 SO4 can cycle more than 6000 h at 0.5 mA cm-2 /0.25 mAh cm-2 , which is 20 times longer than that without Rb2 SO4 . Besides, the Zn||Cu asymmetric cell with Rb2 SO4 achieves a very high average Coulombic efficiency of 99.16% up to 500 cycles. Moreover, the electrolyte with Rb2 SO4 well matches with the VO2 cathode, achieving high initial capacity of 412.7 mAh g-1 at 5 A g-1 and excellent cycling stability with a capacity retention of 71.6% at 5 A g-1 after 500 cycles for the Zn//VO2 full cell.
RESUMO
A fundamental understanding of the nucleation and growth behaviors of Zn metal anodes over a wide range of temperatures is of great value for suppressing Zn dendrite growth. However, work focused on the early nucleation and growth behavior of Zn metal at various temperatures is still absent. Here, we study the effect of cycling temperature on Zn nuclei size and areal density and find that low temperature induces a smaller and dense nucleus, which prevents the formation of dendrites. Based on this finding, a cooling-treatment-based self-healing strategy is developed to in situ eliminate dendrites, which effectively prolongs the lifespan of the Zn anode by 520%. This novel self-healing strategy could be employed as a reliable strategy for restoring batteries in situ to reach a longer lifespan.
RESUMO
Aqueous zinc-ion batteries (AZIBs), the favorite of next-generation energy storage devices, are popular among researchers owing to their environmental friendliness, low cost, and safety. However, AZIBs still face problems of low cathode capacity, fast attenuation, slow ion migration rate, and irregular dendrite growth on anodes. In recent years, many researchers have focused on Zn anode modification to restrain dendrite growth. This review introduces the energy storage mechanism and current challenges of AZIBs, and then some modifying strategies for zinc anodes are elucidated from the perspectives of experiments and theoretical calculations. From the experimental point of view, the modification strategy is mainly to construct a dense artificial interface layer or porous framework on the anode surface, with some research teams directly using zinc alloys as anodes. On the other hand, theoretical research is mainly based on adsorption energy, differential charge density, and molecular dynamics. Finally, this paper summarizes the research progress on AZIBs and puts forward some prospects.
RESUMO
Zinc metal has a severe dendrite issue caused by the uneven Zn plating/stripping during continual cycles, which hinders the practical application of ZIBs. The surficial atomic structure of zinc anode plays a decisive role in solving dendrites and improving the electrochemical performance. According to the density functional theory results, Zn (100) plane possesses a much stronger adsorption energy of zinc atom compared with the (002), thus zinc atom preferentially nucleates on the (100) surface. It subsequently continues to grow vertically on (100). Herein, the zinc anode is designed with hexagonal-hole patterns (h-Zn) through a phosphoric acid etching reaction. An abundance of Zn (100) crystal planes are exposed perpendicularly to the anode surface, while the (002) surfaces are at the bottom of these hexagonal holes. Zinc prefers to deposit in hexagonal holes at the (100) surfaces, favoring the restraining of the surficial dendrite growth and accelerating the Zn deposition kinetics. Thus, the symmetric cell using h-Zn exhibits a long cycling lifespan for over 1200 h and extremely low polarization voltage of ≈80 mV at 5 mA cm-2 and 1 mAh cm-2 . This work provides an insight into the surficial structure design and crystal plane regulation to fabricate brilliant zinc metal anodes.
RESUMO
Constructing ionic conductive hydrogels with diversified properties is crucial for portable zinc-ion hybrid supercapacitors (ZHSCs). Herein, a freeze-tolerant hydrogel electrolyte (AF PVA-CMC/Zn(CF3 SO3 )2 ) is developed by forming a semi-interpenetrating anti-freezing polyvinyl alcohol-carboxymethyl cellulose (AF PVA-CMC) network filled with the ethylene glycol (EG)-containing Zn(CF3 SO3 )2 aqueous solution. The semi-interpenetrating AF PVA-CMC/Zn(CF3 SO3 )2 possesses enhanced mechanical properties, realizes the uniform zinc deposition, and impedes the dendrite growth. Notably, the interaction between PVA and EG suppresses the ice crystal formation and prevents freezing at -20 °C. Due to these advantages, the designed hydrogel owns high ionic conductivity of 1.73/0.75 S m-1 at 20/-20 °C with excellent tensile/compression strength at 20 °C. Impressively, the flexible AF quasi-solid-state ZHSC employing the hydrogel electrolyte achieves a superior energy density at 20/-20 °C (87.9/60.7 Wh kg-1 ). It maintains nearly 84.8% of the initial capacity after 10 000 cycles and a low self-discharge rate (1.77 mV h-1 ) at 20 °C, together with great tolerance to corrosion. Moreover, this device demonstrates a stable electrochemical performance at -20 °C under deformation. The obtained results provide valuable insights for constructing durable hydrogel electrolytes in cold environments.
RESUMO
Commercialization of aqueous zinc-metal batteries remains unrealistic due to the substantial dendrite growth and side reaction issues on the zinc anodes. It is highly demanded to develop easy-to-handle approaches for constructing stable, dense, as well as homogeneous solid anode/electrolyte interfaces. Herein, the authors construct the zinc anode interface with a close-packed Zn-TSA (TSA = thiosalicylate) coordination supramolecular network through the facile and up-scalable wet-chemical method. The hydrophobic Zn-TSA network can block solvated water and establish a solid-state diffusion barrier to well-distribute the interfacial Zn2+ , thus inhibiting hydrogen evolution and zinc dendrite growth on the anode. Meanwhile, the Zn-TSA network induces the formation of a uniform and stable solid electrolyte interphase composed of multiple inorganic-organic compounds. This denser structure can accommodate and self-heal the crack/degradation of the anode interphase associated with the repeated volume changes, and suppress the generation of detrimental by-product, Znx (OTF- )y (OH)2x-y ·nH2 O. Such a rationally fabricated anode/electrolyte interface further endows the assembled symmetric cells with superior plating/stripping stability for over 2000 h without dendrite formation (at 1 mA cm-2 and 1 mAh cm-2 ). Furthermore, this zinc anode has practical application in the Zn-MoS2 and Zn-V2 O5 full cells. This study provides a new train of thought for constructing the dense interface of zinc-metal anode.
Assuntos
Fontes de Energia Elétrica , Eletrólitos , Eletrodos , Água , ZincoRESUMO
A key application of aqueous rechargeable Zn-based batteries (RZBs) is flexible and wearable energy storage devices (FESDs). Current studies and optimizations of Zn anodes have not considered the special flexible working modes needed. In this study, we present the Zn accumulation on the folded line and curve areas of flexible anodes. The correlation between the bending radius and the lifespan of symmetric cells is proposed. The interface contact of hydrogel electrolytes when working in a bending mode is another key factor affecting cell lifespan. After detailed analysis, the ideal cell configuration is shown to be hydrogel electrolytes with suitable chemistry, satisfactory mechanical properties, and high adhesivity. Thus a water in salt (WIS) hydrogel is proposed that demonstrates a highly stable cell performance. This work provides a new perspective in Zn anode research for the development of FESDs.
Assuntos
Dispositivos Eletrônicos Vestíveis , Zinco , Dendritos , Eletrodos , Eletrólitos , HidrogéisRESUMO
Aqueous zinc-ion batteries with low cost and inherent safety are considered to be the next-generation energy storage device. However, they suffer from poor cycling stability and low coulombic efficiency caused by the serious zinc dendrites during the cycling. In this work, a porous water-based filter membrane is first proposed as separator due to its good toughness and uniform pore distribution. The results demonstrate that the symmetrical cell using a filter membrane can cycle over 2600 h with a low voltage hysteresis of 47 mV. Moreover, an aqueous Zn//NaV3 O8 ·1.5H2 O cell based on the filter membrane is constructed, which demonstrates a high capacity retention of 83.8% after 5000 cycles at 5 A g-1 . The mechanism research results reveal that the excellent dendrites inhibiting the ability of the filter membrane should be attributed to its uniform pore distribution rather than its composition. This work proposes a filter membrane separator and reveals the great influence of separator on the zinc stripping/plating process, which will shed light on the development of high-performance aqueous zinc-ion batteries.
RESUMO
Aqueous zinc-ion batteries have rapidly developed recently as promising energy storage devices in large-scale energy storage systems owing to their low cost and high safety. Research on suppressing zinc dendrite growth has meanwhile attracted widespread attention to improve the lifespan and reversibility of batteries. Herein, design methods for dendrite-free zinc anodes and their internal mechanisms are reviewed from the perspective of optimizing the host-zinc interface and the zinc-electrolyte interface. Furthermore, a design strategy is proposed to homogenize zinc deposition by regulating the interfacial electric field and ion distribution during zinc nucleation and growth. This Minireview can offer potential directions for the rational design of dendrite-free zinc anodes employed in aqueous zinc-ion batteries.
RESUMO
The electrocatalytic CO2 reduction reaction (CO2 RR) can dynamise the carbon cycle by lowering anthropogenic CO2 emissions and sustainably producing valuable fuels and chemical feedstocks. Methanol is arguably the most desirable C1 product of CO2 RR, although it typically forms in negligible amounts. In our search for efficient methanol-producing CO2 RR catalysts, we have engineered Ag-Zn catalysts by pulse-depositing Zn dendrites onto Ag foams (PD-Zn/Ag foam). By themselves, Zn and Ag cannot effectively reduce CO2 to CH3 OH, while their alloys produce CH3 OH with Faradaic efficiencies of approximately 1 %. Interestingly, with nanostructuring PD-Zn/Ag foam reduces CO2 to CH3 OH with Faradaic efficiency and current density values reaching as high as 10.5 % and -2.7â mA cm-2 , respectively. Control experiments and DFT calculations pinpoint strained undercoordinated Zn atoms as the active sites for CO2 RR to CH3 OH in a reaction pathway mediated by adsorbed CO and formaldehyde. Surprisingly, the stability of the *CHO intermediate does not influence the activity.
RESUMO
Rechargeable aqueous zinc-ion batteries have been considered as a promising candidate for next-generation batteries. However, the formation of zinc dendrites are the most severe problems limiting their practical applications. To develop stable zinc metal anodes, a synergistic method is presented that combines the Cu-Zn solid solution interface on a copper mesh skeleton with good zinc affinity and a polyacrylamide electrolyte additive to modify the zinc anode, which can greatly reduce the overpotential of the zinc nucleation and increase the stability of zinc deposition. The as-prepared zinc anodes show a dendrite-free plating/stripping behavior over a wide range of current densities. The symmetric cell using this dendrite-free anode can be cycled for more than 280â h with a very low voltage hysteresis (93.1â mV) at a discharge depth of 80 %. The high capacity retention and low polarization are also realized in Zn/MnO2 full cells.
RESUMO
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention owing to their inherent security, low cost, abundant zinc (Zn) resources and high energy density. Nevertheless, the growth of zinc dendrites and side reactions on the surface of Zn anodes during repeatedly plating/stripping shorten the cycle life of AZIBs. Herein, a simple organic molecule with abundant polar functional groups, 2,2,2-trifluoroether formate (TF), has been proposed as a high-efficient additive in the ZnSO4 electrolyte to suppress the growth of Zn dendrites and side reaction during cycling. It is found that TF molecules can infiltrate the solvated sheath layer of the hydrated Zn2+ to reduce the number of highly chemically active H2O molecules owing to their strong binding energy with Zn2+. Simultaneously, TF molecules can preferentially adsorb onto the Zn surface, guiding the uniform deposition of Zn2+ along the crystalline surface of Zn(002). This dual action significantly inhibits the formation of Zn dendrites and side reactions, thus greatly extending the cycling life of the batteries. Accordingly, the Zn//Cu asymmetric cell with 2 % TF exhibits stable cycling for more than 3,800 cycles, achieving an excellent average Columbic efficiency (CE) of 99.81 % at 2 mA cm-2/1 mAh cm-2. Meanwhile, the Zn||Zn symmetric cell with 2 % TF demonstrates a superlong cycle life exceeding 3,800 h and 2,400 h at 2 mA cm-2/1 mAh cm-2 and 5 mA cm-2/2.5 mAh cm-2, respectively. Simultaneously, the Zn//VO2 full cell with 2 % TF possesses high initial capacity (276.8 mAh/g) and capacity retention (72.5 %) at 5 A/g after 500 cycles. This investigation provides new insights into stabilizing Zn metal anodes for AZIBs through the co-regulation of Zn2+ solvated structure and surface crystallography.
RESUMO
Aqueous zinc (Zn) ion batteries have received broad attention recently. However, their practical application is limited by severe Zn dendrite growth and the hydrogen evolution reaction. In this study, three alkali metal ions (Li+, Na+, and K+) are added in ZnSO4 electrolytes, which are subjected to electrochemical measurements and molecular dynamics simulations. The studies show that since K+ has the highest mobility and self-diffusion coefficient among the four ions (Li+, Na+, K+, and Zn2+), it enables K+ to preferentially approach a zinc dendrite at an earlier time, driven by a negative electric field during a cathodic process. The electric double layer, with K+ around the negatively charged Zn dendrite, inhibits dendrite growth and mitigates the hydrogen evolution reaction on the Zn anode. Under this kinetic effect, the Zn-Zn symmetric cell with K+ exhibits a long cycling stability of 1000 h at 1 mA·cm-2 of 1 mAh·cm-2 and 190 h at 30 mA·cm-2 of 2 mAh·cm-2. Such a kinetic effect is also observed with additives Na+ and Li+, though less profound than that of K+.
RESUMO
Although aqueous zinc ion batteries (AZIBs) have the merits of environmental friendliness, high safety and theoretical capacity, the slow kinetics associated with zinc deposition and unavoidable interfacial corrosion have seriously affected the commercialization of aqueous zinc ion batteries. In this work, an ingenious "trinity" design is proposed by applying a porous hydrophilic carbon-loaded iodine coating to the zinc metal surface (INBC@Zn), which simultaneously acts as an artificial protective layer, electrolyte additive and anode curvature regulator, so as to reduce the nucleation overpotential of Zn and promote the preferential deposition of (002) planes to some extent. With this synergistic effect, INBC@Zn exhibits high reversibility and strong side reaction inhibition. As a result, INBC@Zn shows high symmetric cycling stability up to 4500 h at 1 mA cm-2. An ultra-long cycle stability of 1500 cycles with high Coulombic efficiency (99.8 %) is achieved in the asymmetric cell. In addition, the INBC@Zn//NVO full cells exhibit impressive capacity retention (96 % after 1000 cycles at 3 A/g). Importantly, the designed pouch cell demonstrates stable performance and shows certain prospects for application. This work provides a facile and instructive approach toward the development of high-performance AZIBs.
RESUMO
Flexible zinc-ion batteries (ZIBs) with high capacity and long cycle stability are essential for wearable electronic devices. Hydrogel electrolytes have been developed to provide ion-transfer channels while maintaining the integrity of ZIBs under mechanical strain. However, hydrogel matrices are typically swollen with aqueous salt solutions to increase ionic conductivity, which can hinder intimate contact with electrodes and reduce mechanical properties. To address this, a single-Zn-ion-conducting hydrogel electrolyte (SIHE) is developed by integrating polyacrylamide network and pseudo-polyrotaxane structure. The SIHE exhibits a high Zn2+ transference number of 0.923 and a high ionic conductivity of 22.4 mS cm-1 at room temperature. Symmetric batteries with SIHE demonstrate stable Zn plating/stripping performance for over 160 h, with a homogenous and smooth Zn deposition layer. Full cells with La-V2 O5 cathodes exhibit a high capacity of 439 mA h g-1 at 0.1 A g-1 and excellent capacity retention of 90.2% after 3500 cycles at 5 A g-1 . Moreover, the flexible ZIBs display stable electrochemical performance under harsh conditions, such as bending, cutting, puncturing, and soaking. This work provides a simple design strategy for single-ion-conducting hydrogel electrolytes, which could pave the way for long-life aqueous batteries.
RESUMO
Zn-based electrochemical energy storage (EES) systems are plagued by the uncontrollable generation of dendritic zinc and side reactions on zinc anodes. Herein, we report a ZnO porous sheets-assembled sieve-like interface to stabilize zinc anodes. Specifically, ZnO porous sheets are synthesized through the thermal decomposition of basic zinc sulfate nanoflakes and then served as an artificial zinc anode-electrolyte interface. Benefiting from the sieve-like interface formed by the ZnO porous sheets, Zn2+ flux is effectively homogenized during the zinc plating process and thus zinc dendrite growth is restricted. Meanwhile, the corrosion behavior of zinc anodes is alleviated thanks to the hydrophobic feature of the ZnO porous sheets. As a result, the electrochemical properties of zinc anodes are notably optimized under the protection of such a sieve-like interface. Cycling life evaluated at 1 mA cm-2 of the zinc anodes is prolonged from less than 100 h for bare zinc anodes to 2800 h for the protected zinc anodes (Zn@ZnO), and even at 5 mA cm-2, the latter ones can operate normally for 400 h. As expected, the cycling life of VO2//Zn@ZnO zinc-ion batteries is greatly increased, achieving 90% capacity retention after 1000 cycles at 5 A g-1 and activated carbon fiber//Zn@ZnO zinc-ion hybrid supercapacitors possess 96% capacity retention after 10,000 cycles at 1 A g-1. This work provides a promising approach for improving the electrochemical stability of the Zn-based EES system.