Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.518
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(4): 696-705.e12, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398115

RESUMO

Protein aggregation and dysfunction of the ubiquitin-proteasome system are hallmarks of many neurodegenerative diseases. Here, we address the elusive link between these phenomena by employing cryo-electron tomography to dissect the molecular architecture of protein aggregates within intact neurons at high resolution. We focus on the poly-Gly-Ala (poly-GA) aggregates resulting from aberrant translation of an expanded GGGGCC repeat in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. We find that poly-GA aggregates consist of densely packed twisted ribbons that recruit numerous 26S proteasome complexes, while other macromolecules are largely excluded. Proximity to poly-GA ribbons stabilizes a transient substrate-processing conformation of the 26S proteasome, suggesting stalled degradation. Thus, poly-GA aggregates may compromise neuronal proteostasis by driving the accumulation and functional impairment of a large fraction of cellular proteasomes.


Assuntos
Alanina/análogos & derivados , Proteína C9orf72 , Neurônios , Ácido Poliglutâmico , Complexo de Endopeptidases do Proteassoma , Agregados Proteicos , Alanina/genética , Alanina/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Neurônios/metabolismo , Neurônios/patologia , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Ratos , Ratos Sprague-Dawley
2.
EMBO J ; 40(17): e108498, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34309047

RESUMO

Tubulin polyglutamylation is a post-translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The "tubulin code" hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation-specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α-tubulin, while TTLL7 modifies ß-tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis.


Assuntos
Transporte Axonal , Doenças Neurodegenerativas/metabolismo , Peptídeo Sintases/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeo Sintases/genética , Ácido Poliglutâmico/metabolismo , Células de Purkinje/metabolismo
3.
Cell ; 143(4): 564-78, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21074048

RESUMO

Polyglutamylation is a posttranslational modification that generates glutamate side chains on tubulins and other proteins. Although this modification has been shown to be reversible, little is known about the enzymes catalyzing deglutamylation. Here we describe the enzymatic mechanism of protein deglutamylation by members of the cytosolic carboxypeptidase (CCP) family. Three enzymes (CCP1, CCP4, and CCP6) catalyze the shortening of polyglutamate chains and a fourth (CCP5) specifically removes the branching point glutamates. In addition, CCP1, CCP4, and CCP6 also remove gene-encoded glutamates from the carboxyl termini of proteins. Accordingly, we show that these enzymes convert detyrosinated tubulin into Δ2-tubulin and also modify other substrates, including myosin light chain kinase 1. We further analyze Purkinje cell degeneration (pcd) mice that lack functional CCP1 and show that microtubule hyperglutamylation is directly linked to neurodegeneration. Taken together, our results reveal that controlling the length of the polyglutamate side chains on tubulin is critical for neuronal survival.


Assuntos
Carboxipeptidases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Degeneração Neural/metabolismo , Ácido Poliglutâmico/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Cerebelo/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Bulbo Olfatório/patologia , Alinhamento de Sequência , Tubulina (Proteína)/metabolismo
4.
J Biol Chem ; 299(7): 104923, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321451

RESUMO

Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the ß-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than ß-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and ß2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.


Assuntos
Microtúbulos , Peptídeo Sintases , Tubulina (Proteína) , Animais , Encéfalo/metabolismo , Microtúbulos/metabolismo , Ácido Poliglutâmico/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Peptídeo Sintases/metabolismo
5.
J Am Chem Soc ; 146(31): 21664-21676, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058398

RESUMO

Inspired by the unique functionalities of biomolecular membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and nucleic acids, a great deal of effort has been devoted to devising phase-separated artificial subcellular dynamic compartments. These endeavors aim to unravel the molecular mechanism underlying the formation and intracellular delivery of susceptible macromolecular therapeutics. We report herein pyroglutamic acid (PGA)-based well-defined homopolymers featuring stimuli-tunable reversible self-coacervation ability. The polymer exhibits an upper critical solution temperature (UCST) transition in aqueous solutions and has the propensity to undergo cooling-induced LLPS, producing micrometer-sized liquid droplets. This phase separation phenomenon could be modulated by various factors, including polymer concentration, chain length, solution pH, and types and concentrations of different additives. These micrometer droplets are thermally reversible and encapsulate a wide variety of cargoes, including small hydrophobic fluorescent molecules, hydrophilic anticancer drugs, and fluorophore-labeled macromolecular proteins (bovine serum albumin and lysozyme). The payloads were released by exploiting the thermo/pH-mediated disassembly behavior of the coacervates, preserving the bioactivity of the sensitive therapeutics. This environmentally responsive, simple yet versatile artificial MLO model system will provide insights into the biomolecular nonionic condensates and pave the way for the de novo design of dynamic biomolecule depots.


Assuntos
Ligação de Hidrogênio , Humanos , Soroalbumina Bovina/química , Muramidase/química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Antineoplásicos/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Temperatura , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
6.
Metab Eng ; 81: 238-248, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160746

RESUMO

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Assuntos
Corynebacterium glutamicum , Fermentação , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutâmico , Ácido Poliglutâmico/genética , Ligases/metabolismo , Glucose/metabolismo
7.
BMC Microbiol ; 24(1): 125, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622505

RESUMO

γ- poly glutamic acid (γ-PGA), a high molecular weight polymer, is synthesized by microorganisms and secreted into the extracellular space. Due to its excellent performance, γ-PGA has been widely used in various fields, including food, biomedical and environmental fields. In this study, we screened natto samples for two strains of Bacillus subtilis N3378-2at and N3378-3At that produce γ-PGA. We then identified the γ-PGA synthetase gene cluster (PgsB, PgsC, PgsA, YwtC and PgdS), glutamate racemase RacE, phage-derived γ-PGA hydrolase (PghB and PghC) and exo-γ-glutamyl peptidase (GGT) from the genome of these strains. Based on these γ-PGA-related protein sequences from isolated Bacillus subtilis and 181 B. subtilis obtained from GenBank, we carried out genotyping analysis and classified them into types 1-5. Since we found B. amyloliquefaciens LL3 can produce γ-PGA, we obtained the B. velezensis and B. amyloliquefaciens strains from GenBank and classified them into types 6 and 7 based on LL3. Finally, we constructed evolutionary trees for these protein sequences. This study analyzed the distribution of γ-PGA-related protein sequences in the genomes of B. subtilis, B. velezensis and B. amyloliquefaciens strains, then the evolutionary diversity of these protein sequences was analyzed, which provided novel information for the development and utilization of γ-PGA-producing strains.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutâmico/metabolismo , Sequência de Aminoácidos , Hidrolases/metabolismo , Ácido Poliglutâmico/genética , Genômica
8.
Biomacromolecules ; 25(1): 349-354, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38095677

RESUMO

Poly-γ-glutamic acid (PGA) is a natural polymer of d- and/or l-glutamic acid (Glu) linked by isopeptide bonds. We recently showed that PGA synthetase, an enzyme complex composed of PgsB, PgsC, and PgsA, uses only l-Glu for polymerization, and d-Glu residues are introduced by peptide epimerization. However, it remains unclear which of the three enzymes is responsible for epimerization because in vitro functional characterization of the membrane-associated PgsBCA complex has never been successful. Here, we performed gene exchange experiments and showed that PgsA is responsible for the epimerization. Additionally, we identified a region in PgsA that modulates epimerization activity based on homology modeling from the recently solved structure of MslH, which showed 53% identity to PgsA. Our results suggested that d/l-ratios of the PGA product can be altered by introducing amino acid substitutions in this region, which will be useful for the production of PGA with controlled d/l-ratios.


Assuntos
Ácido Glutâmico , Ácido Poliglutâmico , Ácido Poliglutâmico/química , Racemases e Epimerases , Peptídeos
9.
Biomacromolecules ; 25(7): 4095-4109, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850240

RESUMO

Polymer-homopolypeptide block copolymers are a class of bioinspired materials that combine the processability and stability of synthetic polymers with the biocompatibility and unique secondary structures of peptides, such as α-helices and ß-sheets. These properties make them ideal candidates for a wide variety of applications, for example, in the pharmaceutical field, where they are frequently explored as building blocks for polymeric micelle drug delivery systems. While homopolypeptide side chains can be furnished with an array of different moieties to impart the copolymers with desirable properties, such as stimulus responsivity, pyridine derivatives represent an underutilized functional group for this purpose. Additionally, the interplay between polypeptide side chain structure, secondary conformation, and micelle morphology is not yet well understood, particularly in the case of structural regioisomers. Therefore, in this work, a series of polymer-homopolypeptide copolymers were prepared from a poly(ethylene glycol)-b-poly(glutamic acid) (PEG-b-PGA) backbone, where the pendant carboxylic acid groups were covalently conjugated to a series of pyridine regioisomers by carbodiimide coupling. These pyridine regioisomers differed only in the position of the nitrogen heteroatom, ortho, meta or para, relative to the linking group, generating a series of PEG-b-poly(pyridinylmethyl glutamate) (PEG-b-PMG) copolymers. Following self-assembly of the copolymers in aqueous solutions, dynamic light scattering (DLS) revealed differences in micelle hydrodynamic diameter (Dh) (ranging from ∼60 to 120 nm), while transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) revealed distinctive morphologies ranging from ellipsoidal, to cylindrical, and disc-like, suggesting that subtle changes in positional isomers in the polypeptide block may influence the micelle structure. Analysis of the PEG-b-PMG copolymer micelles by circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that differences in the morphology were associated with changes in polypeptide secondary structure, which in turn was influenced by the position of the pyridine heteroatom. Overall, these findings contribute to the broader understanding of the relationship between polypeptide structure and micelle morphology and serve as useful insight for the rational design of polymer-polypeptide nanoparticles.


Assuntos
Micelas , Piridinas , Piridinas/química , Polietilenoglicóis/química , Peptídeos/química , Estrutura Secundária de Proteína , Estereoisomerismo , Isomerismo , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Polímeros/química
10.
Biomacromolecules ; 25(5): 3033-3043, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652289

RESUMO

Intrinsically disordered proteins (IDPs) do not have a well-defined folded structure but instead behave as extended polymer chains in solution. Many IDPs are rich in glycine residues, which create steric barriers to secondary structuring and protein folding. Inspired by this feature, we have studied how the introduction of glycine residues influences the secondary structure of a model polypeptide, poly(l-glutamic acid), a helical polymer. For this purpose, we carried out ring-opening copolymerization with γ-benzyl-l-glutamate and glycine N-carboxyanhydride (NCA) monomers. We aimed to control the glycine distribution within PBLG by adjusting the reactivity ratios of the two NCAs using different reaction conditions (temperature, solvent). The relationship between those conditions, the monomer distributions, and the secondary structure enabled the design of intrinsically disordered polypeptides when a highly gradient microstructure was achieved in DMSO.


Assuntos
Anidridos , Glicina , Proteínas Intrinsicamente Desordenadas , Polimerização , Glicina/química , Proteínas Intrinsicamente Desordenadas/química , Anidridos/química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Estrutura Secundária de Proteína , Peptídeos/química , Dobramento de Proteína
11.
Biomacromolecules ; 25(2): 1096-1107, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216512

RESUMO

Poly(amino acid)s (PAAs) are one kind of favorable biopolymer that can be used as a drug or gene carrier. However, conventional ring-opening polymerization of PAAs is slow and needs a strict anhydrous environment with an anhydrous reagent as well as the product without enough high molecular weight (Mn), which limits the expanding of PAAs' application. Herein, we took BLG-NCA as the monomer to quickly synthesize one kind of high Mn amphiphilic copolymer, poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamic acid) (PEG-PBLG), by relay polymerization with a simple one-pot method within 3 h in mild conditions (open air, moisture insensitive). In the polymerization process, ring-opening polymerization-induced self-assembly in sodium bicarbonate aqueous solution first occurred to obtain low Mn PEG-PBLG seeds without purification. Then γ-benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) dichloromethane solution was added into PEG-PBLG seeds directly and stirred vigorously to form am emulsion; during this process, the amphiphilic PEG-PBLG seeds will anchor on the interface of DCM and water to ensure the concentration of α-helix rigid PBLG in DCM to maintain the following relay polymerization. Then, high Mn PEG-PBLG was obtained in mild conditions in one pot. We found that the α-helix rigid structure was essential for relay polymerization by studying the synthetic speed of amphiphilic copolymer with different secondary structures. MOE simulation results showed that PBLG and BLG-NCA tended to form a double hydrogen bond, which was beneficial to relay polymerization because of higher local concentrations that can produce more double hydrogen bonds. Our strategy can quickly obtain high Mn PEG-PBLG (224.9 KDa) within 3 h from PEG-NH2 and BLG-NCA in one pot and did not need an extra initiator. After deprotection, the poly(ethylene glycol)-b-poly(l-glutamate acid) (PEG-PGA) with high Mn as a second product can be used as an excellent antitumor drug carrier. The high Mn PEG-PGA can achieve an encapsulation rate of 86.7% and a drug loading rate of 47.3%, which is twice that of the low Mn PEG-PGA. As a result, the synthesis of PEG-PBLG by relay polymerization simplified the process of PEG-PAA polymerization and increased the Mn. In addition, this method opened a way to obtain other kinds of high Mn PEG-PBLG values in the future.


Assuntos
Aminoácidos , Anidridos , Glutamatos , Polietilenoglicóis , Polietilenoglicóis/química , Aminoácidos/química , Polimerização , Ácido Glutâmico , Peso Molecular , Polímeros/química , Ácido Poliglutâmico/química
12.
Biomacromolecules ; 25(5): 3112-3121, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38651274

RESUMO

Responsive nanomaterials hold significant promise in the treatment of bacterial infections by recognizing internal or external stimuli to achieve stimuli-responsive behavior. In this study, we present an enzyme-responsive polyelectrolyte complex micelles (PTPMN) with α-helical cationic polypeptide as a coacervate-core for the treatment of Escherichia coli (E. coli) infection. The complex was constructed through electrostatic interaction between cationic poly(glutamic acid) derivatives and phosphorylation-modified poly(ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr) by directly dissolving them in aqueous solution. The cationic polypeptide adopted α-helical structure and demonstrated excellent broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with a minimum inhibitory concentration (MIC) as low as 12.5 µg mL-1 against E. coli. By complexing with anionic PEG-b-PPTyr, the obtained complex formed ß-sheet structures and exhibited good biocompatibility and low hemolysis. When incubated in a bacterial environment, the complex cleaved its phosphate groups triggered by phosphatases secreted by bacteria, exposing the highly α-helical conformation and restoring its effective bactericidal ability. In vivo experiments confirmed accelerated healing in E. coli-infected wounds.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Polieletrólitos/química , Polieletrólitos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice , Micelas , Infecções por Escherichia coli/tratamento farmacológico , Hemólise/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Camundongos , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/farmacologia , Humanos
13.
Cell ; 137(6): 1076-87, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524510

RESUMO

Polyglycylation is a posttranslational modification that generates glycine side chains on proteins. Here we identify a family of evolutionarily conserved glycine ligases that modify tubulin using different enzymatic mechanisms. In mammals, two distinct enzyme types catalyze the initiation and elongation steps of polyglycylation, whereas Drosophila glycylases are bifunctional. We further show that the human elongating glycylase has lost enzymatic activity due to two amino acid changes, suggesting that the functions of protein glycylation could be sufficiently fulfilled by monoglycylation. Depletion of a glycylase in Drosophila using RNA interference results in adult flies with strongly decreased total glycylation levels and male sterility associated with defects in sperm individualization and axonemal maintenance. A more severe RNAi depletion is lethal at early developmental stages, indicating that protein glycylation is essential. Together with the observation that multiple proteins are glycylated, our functional data point towards a general role of glycylation in protein functions.


Assuntos
Evolução Molecular , Glicina/metabolismo , Peptídeo Sintases/genética , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Peptídeo Sintases/química , Ácido Poliglutâmico/metabolismo , Alinhamento de Sequência
14.
Biotechnol Appl Biochem ; 71(3): 565-583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246886

RESUMO

The commercial production of multifunctional, biocompatible, and biodegradable biopolymers such as poly-γ-glutamic acid via microbial fermentation requires the development of simple and cheap methods for mass production. This study optimized the poly-γ-glutamic acid production of Bacillus licheniformis ATCC 9945a in several steps. At first, the most critical components of the culture medium, including l-glutamic acid, citric acid, and glycerol, were selected by screening nine factors through the Plackett-Burman experimental design and then were optimized using the response surface method and the central composite design algorithm. Under optimal conditions, the production of poly-γ-glutamic acid increased by more than 4.2 times from 11.2 to 47.2 g/L. This is one of the highest production rates of this strain in submerged batch fermentation reported so far using the optimized medium compared to the conventional base medium. A novel and efficient sudden pulse feeding strategy (achieved by a novel one-factorial statistical technique) of l-glutamic acid to the optimized medium increased biopolymer production from 47.2 to 66.1 g/L, the highest value reported in published literature with this strain. This simple, reproducible, and cheap fermentation process can considerably enhance the commercial applications of the poly-γ-glutamic acid synthesized by B. licheniformis ATCC 9945a.


Assuntos
Bacillus licheniformis , Meios de Cultura , Ácido Glutâmico , Ácido Poliglutâmico , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Ácido Poliglutâmico/química , Bacillus licheniformis/metabolismo , Bacillus licheniformis/crescimento & desenvolvimento , Meios de Cultura/química , Meios de Cultura/metabolismo , Ácido Glutâmico/metabolismo , Fermentação , Projetos de Pesquisa
15.
Biosci Biotechnol Biochem ; 88(10): 1217-1224, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38955395

RESUMO

Poly-γ-glutamic acid (PGA) has been of interest as a sustainable biopolymer in industrial applications. PGA biosynthesis in Bacillus subtilis is catalyzed by a transmembrane protein complex comprising PgsB, PgsC, and PgsA. To determine the Pgs component responsible for PGA overproduction, we constructed recombinants in which the promoter of the host-derived pgs gene was replaced with another host-derived gene promoter. These recombinants were then transformed using high-copy-number plasmids with various pgs-gene combinations to enhance Pgs component in different ratios. Subsequently, PGA production was investigated in batch cultures with l-glutamate supplemented medium. The recombinant strain enhanced with pgsB alone significantly overproduced PGA (maximum production 35.8 g/L) than either the pgsC- or pgsA-enhanced strain. The molecular weight of the PGA produced with the pgsB-enhanced strain was also greater than that for the pgsC- or pgsA-enhanced strain (approximately 10-fold). Hence, PgsB enhancement alone contributes to PGA overproduction with increased molecular weight.


Assuntos
Bacillus subtilis , Peso Molecular , Ácido Poliglutâmico , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Glutâmico/metabolismo , Técnicas de Cultura Celular por Lotes
16.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474566

RESUMO

In light of industrial developments, water pollution by heavy metals as hazardous chemicals has garnered attention. Addressing the urgent need for efficient heavy metal removal from aqueous environments, this study delves into using poly-γ-glutamic acid (γ-PGA) for the bioflocculation of heavy metals. Utilizing γ-PGA variants from Bacillus subtilis with different molecular weights and salt forms (Na-bonded and Ca-bonded), the research evaluates their adsorption capacities for copper (Cu), lead (Pb), and cadmium (Cd) ions. It was found that Na-bonded γ-PGA with a high molecular weight showed the highest heavy metal adsorption (92.2-98.3%), particularly at a 0.5% concentration which exhibited the highest adsorption efficiency. Additionally, the study investigated the interaction of γ-PGA in mixed heavy metal environments, and it was discovered that Na-γ-PGA-HM at a 0.5% concentration showed a superior adsorption efficiency for Pb ions (85.4%), highlighting its selectivity as a potential effective biosorbent for wastewater treatment. This research not only enlightens the understanding of γ-PGA's role in heavy metal remediation but also underscores its potential as a biodegradable and non-toxic alternative for environmental cleanup. The findings pave the way for further exploration into the mechanisms and kinetics of γ-PGA's adsorption properties.


Assuntos
Metais Pesados , Ácido Poliglutâmico/análogos & derivados , Poluentes Químicos da Água , Cádmio/química , Ácido Glutâmico , Chumbo , Peso Molecular , Metais Pesados/química , Água , Íons , Cloreto de Sódio , Adsorção , Concentração de Íons de Hidrogênio , Cinética
17.
J Sci Food Agric ; 104(3): 1298-1307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782527

RESUMO

BACKGROUND: Natto mucus is mainly composed of poly(γ-glutamic acid) (γ-PGA), which affects the sensory quality of natto and has some effective functional activities. The soybean metabolites that cause different γ-PGA contents in different fermented natto are unclear. RESULTS: In this study, we use untargeted metabolomics to analyze the metabolites of high-production γ-PGA natto and low-production γ-PGA natto and their fermented substrate soybean. A total of 257 main significantly different metabolites with the same trend among the three comparison groups were screened, of which 114 were downregulated and 143 were upregulated. Through the enrichment of metabolic pathways, the metabolic pathways with significant differences were purine metabolism, nucleotide metabolism, fructose and mannose metabolism, anthocyanin biosynthesis, isoflavonoid biosynthesis and the pentose phosphate pathway. CONCLUSION: For 114 downregulated main significantly different metabolites with the same trend among the three comparison groups, Bacillus subtilis (natto) may directly decompose them to synthesize γ-PGA. Adding downregulated substances before fermentation or cultivating soybean varieties with the goal of high production of such substances has a great effect on the production of γ-PGA by natto fermentation. The enrichment analysis results showed the main pathways affecting the production of γ-PGA by Bacillus subtilis (natto) using soybean metabolites, which provides a theoretical basis for the production of γ-PGA by soybean and promotes the diversification of natto products. © 2023 Society of Chemical Industry.


Assuntos
Glycine max , Alimentos de Soja , Alimentos de Soja/análise , Ácido Glutâmico/metabolismo , Ácido Poliglutâmico/análise , Ácido Poliglutâmico/metabolismo , Fermentação , Bacillus subtilis/metabolismo , Metabolismo Secundário
18.
J Sci Food Agric ; 104(11): 6884-6892, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591419

RESUMO

BACKGROUND: Poly-γ-glutamic acid (γ-PGA) is employed extensively in agriculture to enhance soil water retention; however, the underlying mechanism by which γ-PGA improves soil structure and soybean productivity in arid regions remains poorly understood. A micro-scale field experiment was conducted in the arid region of northwest China, employing five concentrations of γ-PGA to investigate its impacts on soybean yield, photosynthesis, and water-use efficiency, as well as soil aggregates and water distribution. The five levels of γ-PGA were 0 (CK), 10 (P1), 20 (P2), 40 (P3), and 80 kg ha-1 (P4). RESULTS: The results demonstrated that the application of γ-PGA significantly improved soybean yield, photosynthesis, and chlorophyll content. It resulted in a decrease in soil aggregate content with a maximum diameter of less than 0.053 mm and an increase in the stability of soil aggregates in the uppermost layer of the soil (0-30 cm). The application of γ-PGA significantly increased soil water content, particularly in the uppermost layer of the soil, and effectively reduced water consumption and improving water use efficiency in soybeans. Overall, the P3 treatment exhibited the most pronounced improvement of soybean yield, photosynthesis, water-use efficiency, as well as distribution of soil aggregates and water. The correlation matrix heatmap also revealed a strong correlation between improvement of soybean yield or photosynthesis at various γ-PGA application levels and the enhancement of soil stability or soil water content. CONCLUSION: The multivariate regression analysis revealed that an optimal application level of 46 kg ha-1 γ-PGA could enhance effectively both yield and water use efficiency of soybean in the arid region of northwest China. © 2024 Society of Chemical Industry.


Assuntos
Glycine max , Fotossíntese , Ácido Poliglutâmico , Solo , Água , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/química , Solo/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Água/metabolismo , Água/análise , China , Fertilizantes/análise , Clorofila/metabolismo
19.
World J Microbiol Biotechnol ; 40(11): 338, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358620

RESUMO

Starch, a crucial raw material, has been extensively investigated for biotechnological applications. However, its application in γ-polyglutamic acid (γ-PGA) production remains unexplored. Based on γ-PGA output of Bacillus subtilis SCP010-1, a novel asynchronous saccharification and fermentation process for γ-PGA synthesis was implemented. The results revealed that a starch concentration of 20%, α-amylase dosage of 75 U/g, liquefaction temperature of 72℃, and γ-PGA yield of 36.31 g/L was achieved. At a glucoamylase dosage of 100 U/g, saccharification 38 h at 60℃, the yield of γ-PGA increased to 48.88 g/L. The contents of total sugar, glucose, maltose and oligosaccharide in saccharified liquid were determined. Through batch fermentation of saccharified liquid in fermentor, the γ-PGA output was elevated to 116.08 g/L. This study can offer a potential cost reduction of 40%, which can be a promising advancement in industrial γ-PGA production. Moreover, our approach can be applied in other starch-based fermentation industries.


Assuntos
Bacillus subtilis , Fermentação , Glucana 1,4-alfa-Glucosidase , Ácido Poliglutâmico , Amido , Zea mays , alfa-Amilases , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/metabolismo , Amido/metabolismo , Bacillus subtilis/metabolismo , alfa-Amilases/metabolismo , Glucana 1,4-alfa-Glucosidase/metabolismo , Zea mays/metabolismo , Zea mays/química , Temperatura , Maltose/metabolismo , Glucose/metabolismo , Reatores Biológicos/microbiologia , Oligossacarídeos/metabolismo , Microbiologia Industrial/métodos
20.
BMC Biotechnol ; 23(1): 47, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907900

RESUMO

γ-polyglutamic acid (γ-PGA) is a biomarker that can be directly obtained by microbial fermentation. Poly(amino acid) superabsorbent polymers (SAPs) were prepared with purified γ-PGA as raw material and ethylene glycol diglycidyl ether (EGDGE) as a cross-linking agent. However, γ-PGA fermentation broth has a high viscosity, requires complex extraction and separation processes, and entails high energy consumption, resulting in the high cost of poly (amino acid) SAPs. Therefore, the coupling fermentation processes of glutamate polyglutamic acid, the process of using glutamate fermentation broth instead of pure glutamate powder for fermentation, and the process of treating the fermentation broth under conditions of centrifugation, UV irradiation, and high temperature, were studied. The results showed that the yield of γ-PGA after centrifugation decreased by 5%, but it did not affect the synthesis of hydrogels, and the addition of γ-PGA fermentation broth had a significant effect on the performance of γ-PGA-co-PASP SAPs. The proposed method not only helps avoid the separation of complex γ-PGA fermentation broth and reduces the cost, but it also helps improve the performance of the super-absorbent resin, which has great application potential.


Assuntos
Ácido Glutâmico , Ácido Poliglutâmico , Ácido Poliglutâmico/química , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA