RESUMO
The dichloromethane extract of the cashew nuts from Anacardium occidentale was fractionated by rotation locular countercurrent chromatography aimed at discovering metabolites that could be useful as new models for photosynthesis inhibitors. The chemical fractionation afforded a complex mixture of anacardic acids, which upon catalytic hydrogenation yielded anacardic acid (1). Methylation of 1 via reaction with diazomethane afforded an ester 2. Both compounds were evaluated using polarographic approaches and fluorescence studies of chlorophyll a (ChL a). The inâ vitro assays informed the decision for the classification of 1 and 2 as Hill reaction inhibitors. Besides that, 1 inhibited the donor side of the PSII, while 2 acted as an energy transfer inhibitor. Therefore, this study is important for the development of herbicides.
Assuntos
Ácidos Anacárdicos , Anacardium , Ácidos Anacárdicos/química , Ácidos Anacárdicos/farmacologia , Anacardium/química , Clorofila A , Nozes/química , FotossínteseRESUMO
Recently, natural antioxidants for the food industry have become an important focus. Cashew nut-shell liquid (CNSL) is composed of compounds that can act as natural antioxidants in food systems. The aim of this work was to evaluate the potential of CNSL and its components to act as natural antioxidants in a bulk oil system. CNSL was treated with calcium hydroxide to obtain two fractions [cardol/cardanols acid fraction (CCF) and anacardic acid fraction (AF)]. CNSL, FF and AF were analyzed by thin-layer chromatography and Fourier-transform infrared spectroscopy. The protective effects of CNSL, CCF and AF were tested in terms of the peroxide value of bulk soybean oil in accelerated assays and were compared against controls with and without synthetic antioxidants (CSA and CWA). CNLS, CCF, AF and CSA were tested at 200 mg/kg soybean oil by incubation at 30, 40, 50 and 60 °C for five days. The activation energy (Ea) for the production of peroxides was calculated by using the linearized Arrhenius equation. Thin-layer chromatography and Fourier-transform infrared spectroscopy revealed that (i) CNSL contained cardanols, anacardic acids, and cardols; (ii) CCF contained cardanols and cardols; and (iii) AF contained anacardic acids. CSA (Ea 35,355 J/mol) was the most effective antioxidant, followed by CCF (Ea 31,498 J/mol) and by CNSL (Ea 26,351 J/mol). AF exhibited pro-oxidant activity (Ea 8339 J/mol) compared with that of CWA (Ea 15,684 J/mol). Therefore, cardols and cardanols from CNSL can be used as a natural antioxidant in soybean oil.
Assuntos
Anacardium , Anacardium/química , Antioxidantes/química , Óleo de Soja/análise , Fenóis/química , Ácidos Anacárdicos/farmacologia , Ácidos Anacárdicos/química , Nozes/químicaRESUMO
Amphipterygium adstringens (cuachalalate) contains anacardic acids (AAs) such as 6-pentadecyl salicylic acid (6SA) that show immunomodulatory and antitumor activity with minimal or no secondary adverse effects. By contrast, most chemotherapeutic agents, such as 5-fluorouracil (5-FU) and carboplatin (CbPt), induce myelosuppression and leukopenia. Here, we investigated the myeloprotective and antineoplastic potential of an AA extract or the 6SA as monotherapy or in combination with commonly used chemotherapeutic agents (5-FU and CbPt) to determine the cytoprotective action of 6SA on immune cells. Treatment of Balb/c breast tumor-bearing female mice with an AA mixture or 6SA did not induce the myelosuppression or leukopenia observed with 5-FU and CbPt. The co-administration of AA mixture or isolated 6SA with 5-FU or CbPt reduced the apoptosis of circulating blood cells and bone marrow cells. Treatment of 4T1 breast tumor-bearing mice with the AA mixture or 6SA reduced tumor growth and lung metastasis and increased the survival rate compared with monotherapies. An increased effect was observed in tumor reduction with the combination of 6SA and CbPt. In conclusion, AAs have important myeloprotective and antineoplastic effects, and they can improve the efficiency of chemotherapeutics, thereby protecting the organism against the toxic effects of drugs such as 5-FU and CbPt.
Assuntos
Ácidos Anacárdicos/química , Carboplatina/farmacologia , Fluoruracila/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Anacardiaceae , Ácidos Anacárdicos/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Citoproteção , Modelos Animais de Doenças , Feminino , Hexanos/química , Leucócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Casca de Planta/metabolismoRESUMO
Parkinson's disease (PD) induced by environmental toxins involves a multifactorial cascade of harmful factors, thus motivating the search for therapeutic agents able to act on the greatest number of molecular targets. This study evaluated the efficacy of 50 mg/kg purified anacardic acids (AAs), isolated from cashew nut shell liquid, on multiple steps of oxidative stress and inflammation induced by rotenone in the substantia nigra (SN) and striatum. Adult mice were divided into four groups: Control, rotenone, AAs + rotenone, and AAs alone. Lipoperoxidation, nitric oxide (NO) levels, and reduced glutathione (GSH)/oxidized gluthatione (GSSG) ratio were evaluated. NF-kB-p65, pro-IL-1ß, cleaved IL-1ß, metalloproteinase-9, Tissue Inhibitory Factor-1 (TIMP-1), tyrosine hydroxylase (TH), and glial fibrillary acidic protein (GFAP) levels were assessed by Western blot. In silico studies were also made using the SwissADME web tool. Rotenone increased lipoperoxidation and NO production and reduced TH levels and GSH/GSSG ratio in both SN and striatum. It also enhanced NF-kB-p65, pro, and cleaved IL-1ß, MMP-9, GFAP levels compared to control and AAs groups. The AAs alone reduced pro-IL-1ß in the striatum while they augmented TIMP1 and reduced MMP-9 amounts in both regions. AAs reversed rotenone-induced effects on lipoperoxidation, NO production, and GSH/GSSG ratio, as well as increased TH and attenuated pro-IL-1ß and MMP-9 levels in both regions, NF-kB-p65 in the SN and GFAP in the striatum. Altogether, the in vivo and in silico analysis reinforced multiple and defined molecular targets of AAs, identifying that they are promising neuroprotective drug candidates for PD, acting against oxidative and inflammatory conditions induced by rotenone.
Assuntos
Ácidos Anacárdicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Praguicidas/toxicidade , Ácidos Anacárdicos/química , Ácidos Anacárdicos/isolamento & purificação , Animais , Simulação por Computador , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteína Glial Fibrilar Ácida/genética , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Interleucina-1beta/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/genética , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/patologia , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Transcrição RelA/genética , Tirosina 3-Mono-Oxigenase/genéticaRESUMO
In this work, we evaluated the ovicidal activity and the deleterious effects of cashew (Anacardium occidentale) nut shell oil and its fractions on the development of Musca domestica and Chrysomya megacephala, important vectors of several diseases. The insecticidal effects of this plant were also measured on the first and second instar larvae of Anticarsia gemmatalis and Spodoptera frugiperda, soy and maize pests, respectively. The fly eggs and the crop pest insect larvae were exposed to the cashew (Anacardium occidentale) nut shell liquid (CNSL) and its fractions: technical CNSL, anacardic acid, cardanol and cardol. The results show that the cardol fraction, for both species of flies, presented the lowest lethal concentration with LC50 of 80.4â mg/L for M. domestica and 90.2â mg/L for C. megacephala. For the mortality of the larvae of A. gemmatalis and S. frugiperda, the most effective fraction was anacardic acid with LC50 of 295.1â mg/L and 318.4â mg/L, respectively. In all species, the mortality rate of the commercial compounds (cypermethrin 600â mg/L and temephos 2â mg/L) was higher than that of the evaluated compounds. Despite this, the results obtained suggest their potential in field trials, once the fractions of A. occidentale presented high mortality at low lethal concentrations in laboratory conditions, with the possibility of integrated use in the control of disease vectors and agricultural pests, employing ecofriendly compounds.
Assuntos
Anacardium/química , Inseticidas/química , Óleos de Plantas/química , Ácidos Anacárdicos/química , Ácidos Anacárdicos/isolamento & purificação , Ácidos Anacárdicos/toxicidade , Anacardium/metabolismo , Animais , Dípteros/efeitos dos fármacos , Dípteros/crescimento & desenvolvimento , Moscas Domésticas/efeitos dos fármacos , Inseticidas/isolamento & purificação , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Dose Letal Mediana , Nozes/química , Nozes/metabolismo , Óvulo/efeitos dos fármacos , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/toxicidade , Óleos de Plantas/metabolismo , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimentoRESUMO
Antianxiety drugs currently in use are associated with a number of serious side effects. Present study was designed to evaluate the efficacy of anacardic acids (AAs) isolated from cashew nut (Anacardium occidentale L.) shell liquid (CNSL) to treat anxiety as well as its role in oxidative stress in mice model. Anxiolytic effect of AA was evaluated using rota-rod and a set of behavioral tests in male Swiss albino mice at the doses of 10, 25, and 50 mg/kg. Flumazenil was used to evaluate the possible involvement of GABAergic system in the mechanism of action of AA. The effect of AA on oxidative stress in mice was evaluated by determining the concentration of malondialdehyde (MDA), reduced glutathione, and catalase (CAT) activity. The detection of DNA damage of the treated animals was performed using alkaline comet test in the hippocampus and frontal cortex of the animals. The results demonstrated that AA did not produce myorelaxant and sedative effects, nor did it cause a decrease in locomotor activity. The anxiolytic effect of AA was well-evident in all tests, especially at higher dose levels (25 and 50 mg/mg). Flumazenil reversed the anxiolytic effect of AA at all doses. In addition, AA reduced oxidative stress by decreasing the concentration of MDA and increasing the levels of reduced glutathione (GSH) and CAT activity. Statistical analysis by Pearson's correlation indicated a positive correlation between anxiolytic effect of AA to its antioxidant and lipid peroxidation inhibitory activity. Furthermore, increased CAT activity and GSH concentrations in the hippocampus and frontal cortex of mice was also complementary to the reduced genotoxic damage observed in the study. In comet assay, AA did not increase in DNA damage. In conclusion, the results supported that AA possesses GABAA receptor mediated anxiolytic activity with the lack of myorelaxation and genotoxicity. © 2018 IUBMB Life, 70(5):420-431, 2018.
Assuntos
Ácidos Anacárdicos/farmacologia , Anacardium/química , Ansiolíticos/farmacologia , Antioxidantes/farmacologia , Ansiedade/tratamento farmacológico , Ácidos Anacárdicos/química , Ácidos Anacárdicos/isolamento & purificação , Animais , Ansiolíticos/química , Ansiolíticos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Catalase/metabolismo , Diazepam/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos ICR , Nozes/química , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Teste de Desempenho do Rota-RodRESUMO
A dichloromethane extract from leaves of Searsia pyroides potentiated gamma aminobutyric acid-induced chloride currents by 171.8 ± 54% when tested at 100 µg/mL in Xenopus oocytes transiently expressing gamma aminobutyric acid type A receptors composed of α1ß2γ2s subunits. In zebrafish larvae, the extract significantly lowered pentylenetetrazol-provoked locomotion when tested at 4 µg/mL. Active compounds of the extract were tracked with the aid of HPLC-based activity profiling utilizing a previously validated zebrafish larval locomotor activity assay. From two active HPLC fractions, compounds 1â-â3 were isolated. Structurally related compounds 4â-â6 were purified from a later eluting inactive HPLC fraction. With the aid of 1H and 13C NMR and high-resolution mass spectrometry, compounds 1â-â6 were identified as analogues of anacardic acid. Compounds 1â-â3 led to a concentration-dependent decrease of pentylenetetrazol-provoked locomotion in the zebrafish larvae model, while 4â-â6 were inactive. Compounds 1â-â3 enhanced gamma aminobutyric acid-induced chloride currents in Xenopus oocytes in a concentration-dependent manner, while 4â-â6 only showed marginal enhancements of gamma aminobutyric acid-induced chloride currents. Compounds 2, 3, and 5 have not been reported previously.
Assuntos
Anacardiaceae/química , Ácidos Anacárdicos/farmacologia , GABAérgicos/farmacologia , Extratos Vegetais/farmacologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácidos Anacárdicos/química , Ácidos Anacárdicos/isolamento & purificação , Animais , Bioensaio , Cloretos , Cromatografia Líquida de Alta Pressão , GABAérgicos/química , GABAérgicos/isolamento & purificação , Larva , Locomoção/efeitos dos fármacos , Cloreto de Metileno , Oócitos , Pentilenotetrazol , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Xenopus laevis , Peixe-ZebraRESUMO
Proteins of the Bcl-2 family are key targets in anticancer drug discovery. Disrupting the interaction between anti- and pro-apoptotic members of this protein family was the approach chosen in this study to restore apoptosis. Thus, a biological screening on the modulation of the Bcl-xL/Bak and Mcl-1/Bid interactions permitted the selection of Knema hookeriana for further phytochemical investigations. The ethyl acetate extract from the stem bark led to the isolation of six new compounds, three acetophenone derivatives (1-3) and three anacardic acid derivatives (4-6), along with four known anacardic acids (7-10) and two cardanols (11, 12). Their structures were elucidated by 1D and 2D NMR analysis in combination with HRMS experiments. The ability of these compounds to antagonize Bcl-xL/Bak and Mcl-1/Bid association was determined, using a protein-protein interaction assay, but only anacardic acid derivatives (4-10) exhibited significant binding properties, with Ki values ranging from 0.2 to 18 µM. Protein-ligand NMR experiments further revealed that anacardic acid 9, the most active compound, does not interact with the anti-apoptotic proteins Bcl-xL and Mcl-1 but instead interacts with pro-apoptotic protein Bid.
Assuntos
Acetofenonas/isolamento & purificação , Ácidos Anacárdicos/isolamento & purificação , Ácidos Anacárdicos/farmacologia , Myristicaceae/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Resorcinóis/isolamento & purificação , Acetofenonas/química , Acetofenonas/farmacologia , Ácidos Anacárdicos/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/efeitos dos fármacos , Malásia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Casca de Planta/química , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Resorcinóis/química , Resorcinóis/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/efeitos dos fármacos , Proteína bcl-X/metabolismoRESUMO
Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.
Assuntos
Ácidos Anacárdicos/farmacologia , Extratos Vegetais/farmacologia , Ácidos Anacárdicos/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Nozes/química , Extratos Vegetais/químicaRESUMO
In order to regulate the activity of P5, which is a member of the protein disulfide isomerase family, we screened a chemical compound library for P5-specific inhibitors, and identified two candidate compounds (anacardic acid and NSC74859). Interestingly, anacardic acid inhibited the reductase activity of P5, but did not inhibit the activity of protein disulfide isomerase (PDI), thiol-disulfide oxidoreductase ERp57, or thioredoxin. NSC74859 inhibited all these enzymes. When we examined the effects of these compounds on the secretion of soluble major histocompatibility complex class-I-related gene A (MICA) from cancer cells, anacardic acid was found to decrease secretion. In addition, anacardic acid was found to reduce the concentration of glutathione up-regulated by the anticancer drug 17-demethoxygeldanamycin in cancer cells. These results suggest that anacardic acid can both inhibit P5 reductase activity and decrease the secretion of soluble MICA from cancer cells. It might be a novel and potent anticancer treatment by targeting P5 on the surface of cancer cells.
Assuntos
Ácidos Anacárdicos/farmacologia , Benzenossulfonatos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Ácidos Aminossalicílicos/síntese química , Ácidos Aminossalicílicos/química , Ácidos Aminossalicílicos/farmacologia , Ácidos Anacárdicos/síntese química , Ácidos Anacárdicos/química , Benzenossulfonatos/síntese química , Benzenossulfonatos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HCT116 , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Isomerases de Dissulfetos de Proteínas/metabolismo , Relação Estrutura-AtividadeRESUMO
Anacardic acid derivatives exhibit a broad range of biological activities. In this report, an efficient method for the synthesis of anacardic acid derivatives was explored, and a small set of salicylic acid variants synthesised retaining a constant hydrophobic element (a naphthyl tail). The naphthyl side chain was introduced via Wittig reaction and the aldehyde installed using directed ortho-metalation reaction of the substituted o-anisic acids. The failure of ortho-metalation using unprotected carboxylic acid group compelled us to use directed ortho-metalation in which a tertiary amide was used as a strong ortho-directing group. In the initial route, tertiary amide cleavage during final step was challenging, but cleaving the tertiary amide before Wittig reaction was beneficial. The Wittig reaction with protected carboxylic group (methyl ester) resulted in side-products whereas using sodium salt resulted in higher yields. The novel compounds were screened for antibacterial activity and cytotoxicity. Although substitution on the salicylic head group enhanced antibacterial activities they also enhanced cytotoxicity.
Assuntos
Ácidos Anacárdicos/química , Antibacterianos/síntese química , Ácidos Anacárdicos/farmacologia , Ácidos Anacárdicos/toxicidade , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Ácido Salicílico/química , Relação Estrutura-AtividadeRESUMO
Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 µM, αKA of 0.38µM and a ß value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid binding, whereas the larger inhibitor 23d blocks the enzyme active site.
Assuntos
Ácidos Anacárdicos/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Descoberta de Drogas , Ácidos Anacárdicos/síntese química , Ácidos Anacárdicos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Lipoxygenases catalyze the oxidation of unsaturated fatty acids, such as linoleic acid, which play a crucial role in inflammatory responses. Selective inhibitors may provide a new therapeutic approach for inflammatory diseases. In this study, we describe the identification of a novel soybean lipoxygenase-1 (SLO-1) inhibitor and a potato 5-lipoxygenase (5-LOX) activator from a screening of a focused compound collection around the natural product anacardic acid. The natural product anacardic acid inhibits SLO-1 with an IC(50) of 52 µM, whereas the inhibitory potency of the novel mixed type inhibitor 23 is fivefold enhanced. In addition, another derivative (21) caused non-essential activation of potato 5-LOX. This suggests the presence of an allosteric binding site that regulates the lipoxygenase activity.
Assuntos
Ácidos Anacárdicos/química , Araquidonato 5-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Lipoxigenase/metabolismo , Salicilatos/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Salicilatos/síntese química , Salicilatos/química , Solanum tuberosum/enzimologia , Glycine max/enzimologia , Relação Estrutura-AtividadeRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The bark of Amphipterygium adstringens Schiede ex Schltdl (Anacardiaceae), commonly known as 'cuachalalate' has been used in Mexican traditional medicine for the treatment of skin and oral lesions, gastric ulcers, and other conditions. The use as wound healing of the bark of this plant has been known since before the Spanish conquest of Mexico. Its uses are mentioned in the first writings of the Spanish in the 16th century. It is important to highlight that its use for wound healing treatment has no scientific previous reports. AIM OF THE STUDY: The objectives of this study were to determine the wound healing effect of the hydroalcoholic extract of the stem bark of Amphipterygium adstringens and its main metabolites, using a model of excision in the back of Wistar rats. To evaluate its antimicrobial effect against common bacteria that living on the skin of wounds and to evaluate its effect on angiogenesis. MATERIALS AND METHODS: The hydroalcoholic extract of cuachalalate (HAE, 10 mg/wound/day), the 3α-hydroxymasticadienoic acid (3 MA, 300 µg/wound/day), the masticadienoic acid (MA, 300 µg/wound/day), and a mixture of anacardic acids (ANA, 300 µg per wound) were tested in a murine excision model topically for 15 days, to evaluate their wound-healing effect. The results were reported in a wound closure percentage (n = 30 animals per treatment curve), using pirfenidone (PIR, 8% in vehicle) as a reference drug. In addition, histologic analysis was performed to evaluate the structure and quality of the scar. The effect on angiogenesis was assessed using the chick embryo chorioallantoic membrane (CAM) model (n = 6 eggs per treatment). The concentration evaluated for each treatment was 300 µg, using as proangiogenic reference drug the histamine (HIS, 5.6 µg) and as antiangiogenic drugs pirfenidone (9 µg) and acetylsalicylic acid (ASA, 9 µg). The antimicrobial test was performed against S. mutans, S. aureus, P. aeruginosa y E. coli using a minimum inhibitory concentration (MIC) assay. RESULTS: The 3α-hydroxymasticadienoic (3 MA) acid and the anacardic acids (ANA) improve the wound closure by approximates 30% (similar to pirfenidone) in comparison with the control-treated with the vehicle in the proliferative phase. On the other hand, the hydroalcoholic extract of cuachalalate (HAE) did not show an effect on the wound healing process. The histologic analysis demonstrated that the three main metabolites showed an improvement in the scar structure. According to the CAM results, it is probable that the main action mechanism of the 3α-hydroxymasticadienoic acid and the anacardic acids is related to their proangiogenic effect. In addition, ANA showed a modest antimicrobial effect. CONCLUSIONS: The 3α-hydroxymasticadienoic acid and anacardic acids showed a better tissue structure and reduced the time closure of the wound. In addition, the anacardic acids showed antimicrobial effects and both metabolites promote angiogenesis, suggesting that these effects may be related to their action mechanism. These metabolites of cuachalalate could be a good alternative for wound healing treatment.
Assuntos
Anacardiaceae , Ácidos Anacárdicos , Anacardiaceae/química , Ácidos Anacárdicos/química , Animais , Embrião de Galinha , Cicatriz , Escherichia coli , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pseudomonas aeruginosa , Ratos , Ratos Wistar , Staphylococcus aureus , CicatrizaçãoRESUMO
Histone acetyltransferases (HATs) are a class of epigenetic enzymes crucial for chromatin restructuring and transcriptional regulation in eukaryotic cells, thus being a promising target for therapeutic development. Nonetheless, differently from histone deacetylases (HDACs) inhibitors, there is still paucity of small-molecule modulators of HAT activity. After a decline during past decade, natural products and their derivatives could be once again a valuable tool in the lead discovery process and meet such need of Novel Chemical Entities (NCEs). In this review, we will provide a comprehensive summary on the discovery of small-molecule HAT modulators from naturally occurring molecular scaffolds.
Assuntos
Produtos Biológicos/química , Produtos Biológicos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Ácidos Anacárdicos/química , Ácidos Anacárdicos/metabolismo , Animais , Benzofenonas/química , Benzofenonas/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Fenóis/química , Fenóis/metabolismo , PolifenóisRESUMO
The effects of anacardic acids and cardols isolated from the cashew nut and apple Anacardium occidentale (Anacardiaceae) on murine B16-F10 melanoma cells were tested. Although anacardic acids and cardols were found to inhibit tyrosinase, a key enzyme in melanin synthesis, melanogenesis in melanocytes was not suppressed in cultured cells but rather enhanced. Both anacardic acids and cardols exhibited moderate cytotoxicity.
Assuntos
Ácidos Anacárdicos/farmacologia , Anacardium/química , Citotoxinas/farmacologia , Melanócitos/efeitos dos fármacos , Resorcinóis/farmacologia , Ácidos Anacárdicos/química , Ácidos Anacárdicos/isolamento & purificação , Animais , Citotoxinas/química , Citotoxinas/isolamento & purificação , Melaninas/biossíntese , Melanoma/patologia , Camundongos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Resorcinóis/química , Resorcinóis/isolamento & purificação , Células Tumorais CultivadasRESUMO
One new alkylanacardic acid, ozocardic A (1), along with the known and related metabolites 6-tridecyl anacardic acid (2) and ß-sitosterol (3) was isolated from Ozoroa pulcherrima. The structure of the new compound was elucidated by detailed spectroscopic analysis such as (1)H, (13)C NMR, COSY, HMQC, HMBC, and HREIMS. The structures of known compounds (6-tridecyl anacardic acid (2) and ß-sitosterol (3)) were identified by the comparison of their spectral data with those published in the literature.
Assuntos
Anacardiaceae/química , Ácidos Anacárdicos/química , Ácidos Anacárdicos/isolamento & purificação , Camarões , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Raízes de Plantas/químicaRESUMO
The n-hexane extract of Knema pachycarpa fruits (Myristicaceae family), exhibiting strong anti-acetylcholinesterase activity, was investigated by gas chromatography/mass spectrometry and then purified by column chromatography. Guided by GC/MS profiling and bioassay, chromatographic separations led to the isolation of five new compounds: two anacardic acid derivatives 1-2, two cardanol derivatives 3-4 and a cardol derivative 5, along with mixtures of known phenolic lipids 6-9. The chemical structures were determined by various spectroscopic methods. New isolated compounds 1-5 were evaluated for their cytotoxicity and anti-acetylcholinesterase activity. Cardanol 3 and cardol 5 were the most active compounds in the acetylcholinesterase inhibitory assay with IC50 values of 2.60 ± 0.24 µM and 2.46 ± 0.23 µM, respectively. Cardanol 4 and cardol 5 showed moderate cytotoxicity against Hela and MCF-7 cancer cell lines with IC50 values ranging from 31.36 ± 0.41 µM to 41.30 ± 2.49 µM.
Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Myristicaceae/química , Ácidos Anacárdicos/química , Avaliação Pré-Clínica de Medicamentos , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Resorcinóis/química , Resorcinóis/farmacologiaRESUMO
The frequency of Alzheimer's disease (AD) is growing rapidly with longer life expectancy and the consequent increase of people with a high risk of neurodegenerative diseases. Anacardic acid (AA) has several pharmacological actions, such as antioxidants, anticholinesterase, and anti-inflammatory, which are related to the protection against aging disorders. Also, the metals copper and zinc are co-factors of antioxidant enzymes that can be associated with AA to improve brain-protective action. This study aimed to evaluate the potential of AA metal complexes using copper and zinc chelators to produce potential agents against Alzheimer's disease. For this purpose, Cu and Zn were linked to AA in the ratio of 1:1 in a basic medium. The complexes' formation was confirmed by ultraviolet and visible spectroscopy. The toxicity was evaluated in the zebrafish model, and other information related to AD was obtained using the zebrafish model of anxiety. AA-Zn and AA-Cu complexes showed better antioxidant action than free AA. In the anti-AChE activity, AA was like the AA-Cu complex. In models using adult zebrafish, no toxicity for AA complexes was found, and in the locomotor model, AA-Cu demonstrated possible anxiolytic action. In in silico experiments comparing AA and AA-Cu complex, the coupling energy with the enzyme was lower for the AA-Cu complex, showing better interaction, and also the distances of the active site amino acids with this complex were lower, similar to galantamine, the standard anti-AChE inhibitor. Thus, AA-Cu showed interesting results for more detailed study in experiments related to Alzheimer's disease.
Assuntos
Ácidos Anacárdicos/administração & dosagem , Antioxidantes/administração & dosagem , Inibidores da Colinesterase/administração & dosagem , Doença de Alzheimer , Ácidos Anacárdicos/química , Animais , Antioxidantes/química , Quelantes/química , Quelantes/farmacologia , Inibidores da Colinesterase/química , Cobre/química , Cobre/farmacologia , Simulação de Acoplamento Molecular , Peixe-Zebra , Zinco/química , Zinco/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The incidence of gastric mucosa lesions in the adult population has increased mainly due to the continued use of nonsteroidal anti-inflammatory drugs (NSAIDs). The cashew (Anacardium occidentale L.) is a tropical tree, cultivated in several countries, whose barks, leaves and pseudofruit (cashew apple) are popularly used in traditional medicine for the treatment of many diseases, including gastric ulcer. AIM: Our study evaluated the potential gastroprotective effect of the carotenoid and anacardic acids-enriched aqueous extract (CAE), prepared from cashew apple pomace, in the dose-repeated acetylsalicylic acid (ASA)-induced gastric lesions model in rats. MATERIAL AND METHODS: After randomly distribution into five group (G1 - G5, n = 8 animals/group), male Wistar rats were daily treated with ASA solution (200 mg/kg, 5 ml/kg, G2 - G5) or potable water (Satellite group, G1) during 14 days. From 8th to 14th experimental day, rats in G3 - G5 groups were orally treated with CAE (50, 100 and 500 mg/kg, 5 ml/kg, respectively). Body weight was measured on 0, 7th and 14th day. On the 14th experimental day, all surviving animals were euthanized for macroscopic evaluation of the inner organs and stomach removal. After weighting, each stomach was properly prepared for biochemical analysis [myeloperoxidase activity (MPO), reduced glutathione analysis (GSH), IL-1ß, CXCL2/MIP-2, TNF-α and IL-10 levels]. RESULTS: At the most efficient dose (100 mg/kg, p.o.), CAE-treated animals showed a slight improvement in the macroscopic aspect of gastric mucosa associated with significant (p < 0.05) reduced levels of IL-1ß, CXCL2/MIP-2, and MPO activity besides increased levels of GSH (partially), and IL-10 in stomach tissues. CONCLUSIONS: The present study demonstrated that the carotenoid and anacardic acids-enriched extract obtained from cashew apple pomace is a promising raw material for the development of herbal medicine and/or functional food supplements for the adjuvant treatment of NSAIDs-induced gastric ulcers.