RESUMO
Insects and other arthropods utilise external sensory structures for mechanosensory, olfactory, and gustatory reception. These sense organs have characteristic shapes related to their function, and in many cases are distributed in a fixed pattern so that they are identifiable individually. In Drosophila melanogaster, the identity of sense organs is regulated by specific combinations of transcription factors. In other arthropods, however, sense organ subtypes cannot be linked to the same code of gene expression. This raises the questions of how sense organ diversity has evolved and whether the principles underlying subtype identity in D. melanogaster are representative of other insects. Here, we provide evidence that such principles cannot be generalised, and suggest that sensory organ diversification followed the recruitment of sensory genes to distinct sensory organ specification mechanism. RESULTS: We analysed sense organ development in a nondipteran insect, the flour beetle Tribolium castaneum, by gene expression and RNA interference studies. We show that in contrast to D. melanogaster, T. castaneum sense organs cannot be categorised based on the expression or their requirement for individual or combinations of conserved sense organ transcription factors such as cut and pox neuro, or members of the Achaete-Scute (Tc ASH, Tc asense), Atonal (Tc atonal, Tc cato, Tc amos), and neurogenin families (Tc tap). Rather, our observations support an evolutionary scenario whereby these sensory genes are required for the specification of sense organ precursors and the development and differentiation of sensory cell types in diverse external sensilla which do not fall into specific morphological and functional classes. CONCLUSIONS: Based on our findings and past research, we present an evolutionary scenario suggesting that sense organ subtype identity has evolved by recruitment of a flexible sensory gene network to the different sense organ specification processes. A dominant role of these genes in subtype identity has evolved as a secondary effect of the function of these genes in individual or subsets of sense organs, probably modulated by positional cues.
Assuntos
Expressão Gênica , Interferência de RNA , Órgãos dos Sentidos/crescimento & desenvolvimento , Tribolium/crescimento & desenvolvimento , Animais , Larva/genética , Larva/crescimento & desenvolvimento , Tribolium/genéticaRESUMO
Species-specific traits are thought to have been acquired by natural selection. Transcription factors play central roles in the evolution of species-specific traits. Hox genes encode a set of conserved transcription factors essential for establishing the anterior-posterior body axis of animals. Changes in the expression or function of Hox genes can lead to the diversification of animal-body plans. The tunicate ascidian Ciona intestinalis Type A has an orange-colored structure at the sperm duct terminus. This orange-pigmented organ (OPO) is the characteristic that can distinguish this ascidian from other closely related species. The OPO is formed by the accumulation of orange-pigmented cells (OPCs) that are present throughout the adult body. We show that Hox13 is essential for formation of the OPO. Hox13 is expressed in the epithelium of the sperm duct and neurons surrounding the terminal openings for sperm ejection, while OPCs themselves do not express this gene. OPCs are mobile cells that can move through the body vasculature by pseudopodia, suggesting that the OPO is formed by the accumulation of OPCs guided by Hox13-positive cells. Another ascidian species, Ciona savignyi, does not have an OPO. Like Hox13 of C. intestinalis, Hox13 of C. savignyi is expressed at the terminus of its sperm duct; however, its expression domain is limited to the circular area around the openings. The genetic changes responsible for the acquisition or loss of OPO are likely to occur in the expression pattern of Hox13.
Assuntos
Ciona intestinalis/genética , Regulação da Expressão Gênica no Desenvolvimento , Genitália Masculina/crescimento & desenvolvimento , Órgãos dos Sentidos/crescimento & desenvolvimento , Animais , Ciona/genética , Ciona/crescimento & desenvolvimento , Ciona intestinalis/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Genes Homeobox , Genitália Masculina/citologia , Masculino , Modelos Biológicos , Neurônios/metabolismo , Pigmentos Biológicos , Especificidade da EspécieRESUMO
Hox genes are involved in the patterning of animal body parts at multiple levels of regulatory hierarchies. Early expression of Hox genes in different domains along the embryonic anterior-posterior (A/P) axis in insects, vertebrates, and other animals establishes segmental or regional identity. However, Hox gene function is also required later in development for the patterning and morphogenesis of limbs and other organs. In Drosophila, spatiotemporal modulation of Sex combs reduced (Scr) expression within the first thoracic (T1) leg underlies the generation of segment- and sex-specific sense organ patterns. High Scr expression in defined domains of the T1 leg is required for the development of T1-specific transverse bristle rows in both sexes and sex combs in males, implying that the patterning of segment-specific sense organs involves incorporation of Scr into the leg development and sex determination gene networks. We sought to gain insight into this process by identifying the cis-and trans-regulatory factors that direct Scr expression during leg development. We have identified two cis-regulatory elements that control spatially modulated Scr expression within T1 legs. One of these enhancers directs sexually dimorphic expression and is required for the formation of T1-specific bristle patterns. We show that the Distalless and Engrailed homeodomain transcription factors act through sequences in this enhancer to establish elevated Scr expression in spatially defined domains. This enhancer functions to integrate Scr into the intrasegmental gene regulatory network, such that Scr serves as a link between leg patterning, sex determination, and sensory organ development.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Homeodomínio/genética , Órgãos dos Sentidos/metabolismo , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Extremidades/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Mutação , Órgãos dos Sentidos/crescimento & desenvolvimento , Fatores Sexuais , Fatores de Transcrição/metabolismoRESUMO
Barbels are important sensory organs in teleosts, reptiles, and amphibians. The majority of â¼4,000 catfish species, such as the channel catfish (Ictalurus punctatus), possess abundant whisker-like barbels. However, barbel-less catfish, such as the bottlenose catfish (Ageneiosus marmoratus), do exist. Barbeled catfish and barbel-less catfish are ideal natural models for determination of the genomic basis for barbel development. In this work, we generated and annotated the genome sequences of the bottlenose catfish, conducted comparative and subtractive analyses using genome and transcriptome datasets, and identified differentially expressed genes during barbel regeneration. Here, we report that chemokine C-C motif ligand 33 (ccl33), as a key regulator of barbel development and regeneration. It is present in barbeled fish but absent in barbel-less fish. The ccl33 genes are differentially expressed during barbel regeneration in a timing concordant with the timing of barbel regeneration. Knockout of ccl33 genes in the zebrafish (Danio rerio) resulted in various phenotypes, including complete loss of barbels, reduced barbel sizes, and curly barbels, suggesting that ccl33 is a key regulator of barbel development. Expression analysis indicated that paralogs of the ccl33 gene have both shared and specific expression patterns, most notably expressed highly in various parts of the head, such as the eye, brain, and mouth areas, supporting its role for barbel development.
Assuntos
Quimiocinas/metabolismo , Proteínas de Peixes/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Animais , Peixes-Gato/genética , Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/metabolismo , Quimiocinas/genética , Quimiocinas/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/fisiologia , Perfilação da Expressão Gênica , Genoma/genética , Masculino , Órgãos dos Sentidos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismoRESUMO
Spiders are equipped with a large number of innervated cuticular specializations, which respond to various sensory stimuli. The physiological function of mechanosensory organs has been analysed in great detail in some model spider species (e.g. Cupiennius salei); however, much less is known about the distribution and function of chemosensory organs. Furthermore, our knowledge on how the sense organ pattern develops on the spider appendages is limited. Here we analyse the development of the pattern and distribution of six different external mechano- and chemosensory organs in all postembryonic stages and in adult male and female spiders of the species Parasteatoda tepidariorum. We show that except for small mechanosensory setae, external sense organs appear in fixed positions on the pedipalps and first walking legs, arranged in longitudinal rows along the proximal-distal axis or in invariable positions relative to morphological landmarks (joints, distal tarsal tip). A comparison to other Entelegynae spiders shows that these features are conserved. We hope that this study lays the foundation for future molecular analysis to address the question how this conserved pattern is generated.
Assuntos
Extremidades/crescimento & desenvolvimento , Órgãos dos Sentidos/crescimento & desenvolvimento , Sensilas/anatomia & histologia , Sensilas/crescimento & desenvolvimento , Aranhas/crescimento & desenvolvimento , Animais , Extremidades/anatomia & histologia , Feminino , Fêmur/anatomia & histologia , Fêmur/crescimento & desenvolvimento , Masculino , Metatarso/anatomia & histologia , Metatarso/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Órgãos dos Sentidos/anatomia & histologia , Sensilas/ultraestrutura , Aranhas/anatomia & histologia , Tíbia/anatomia & histologia , Tíbia/crescimento & desenvolvimentoRESUMO
AMPA-type glutamate receptors (GluAs) mediate fast excitatory transmission in the vertebrate central nervous system (CNS), and their function has been extensively studied in the mature mammalian brain. However, GluA expression begins very early in developing embryos, suggesting that they may also have unidentified developmental roles. Here, we identify developmental roles for GluAs in the ascidian Ciona intestinalis Mammals express Ca2+-permeable GluAs (Ca-P GluAs) and Ca2+-impermeable GluAs (Ca-I GluAs) by combining subunits derived from four genes. In contrast, ascidians have a single gluA gene. Taking advantage of the simple genomic GluA organization in ascidians, we knocked down (KD) GluAs in Ciona and observed severe impairments in formation of the ocellus, a photoreceptive organ used during the swimming stage, and in resorption of the tail and body axis rotation during metamorphosis to the adult stage. These defects could be rescued by injection of KD-resistant GluAs. GluA KD phenotypes could also be reproduced by expressing a GluA mutant that dominantly inhibits glutamate-evoked currents. These results suggest that, in addition to their role in synaptic communication in mature animals, GluAs also have critical developmental functions.
Assuntos
Ciona intestinalis/crescimento & desenvolvimento , Receptores de Glutamato/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva , Masculino , Morfogênese , Oócitos/fisiologia , Receptores de Glutamato/genética , Órgãos dos Sentidos/metabolismo , XenopusRESUMO
Hox transcription factors specify distinct cell types along the anterior-posterior axis of metazoans by regulating target genes that modulate signaling pathways. A well-established example is the induction of Epidermal Growth Factor (EGF) signaling by an Abdominal-A (Abd-A) Hox complex during the specification of Drosophila hepatocyte-like cells (oenocytes). Previous studies revealed that Abd-A is non-cell autonomously required to promote oenocyte fate by directly activating a gene (rhomboid) that triggers EGF secretion from sensory organ precursor (SOP) cells. Neighboring cells that receive the EGF signal initiate a largely unknown pathway to promote oenocyte fate. Here, we show that Abd-A also plays a cell autonomous role in inducing oenocyte fate by activating the expression of the Pointed-P1 (PntP1) ETS transcription factor downstream of EGF signaling. Genetic studies demonstrate that both PntP1 and PntP2 are required for oenocyte specification. Moreover, we found that PntP1 contains a conserved enhancer (PntP1OE) that is activated in oenocyte precursor cells by EGF signaling via direct regulation by the Pnt transcription factors as well as a transcription factor complex consisting of Abd-A, Extradenticle, and Homothorax. Our findings demonstrate that the same Abd-A Hox complex required for sending the EGF signal from SOP cells, enhances the competency of receiving cells to select oenocyte cell fate by up-regulating PntP1. Since PntP1 is a downstream effector of EGF signaling, these findings provide insight into how a Hox factor can both trigger and potentiate the EGF signal to promote an essential cell fate along the body plan.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Fator de Crescimento Epidérmico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Drosophila/enzimologia , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Fator de Crescimento Epidérmico/genética , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/citologia , Hepatócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , Órgãos dos Sentidos/crescimento & desenvolvimento , Fatores de Transcrição/genéticaRESUMO
The lateral line system is a useful model for studying the embryonic and evolutionary diversification of different organs and cell types. In jawed vertebrates, this ancestrally comprises lines of mechanosensory neuromasts over the head and trunk, flanked on the head by fields of electrosensory ampullary organs, all innervated by lateral line neurons in cranial lateral line ganglia. Both types of sense organs, and their afferent neurons, develop from cranial lateral line placodes. Current research primarily focuses on the posterior lateral line primordium in zebrafish, which migrates as a cell collective along the trunk; epithelial rosettes form in the trailing zone and are deposited as a line of neuromasts, within which hair cells and supporting cells differentiate. However, in at least some other teleosts (e.g. catfishes) and all non-teleosts, lines of cranial neuromasts are formed by placodes that elongate to form a sensory ridge, which subsequently fragments, with neuromasts differentiating in a line along the crest of the ridge. Furthermore, in many non-teleost species, electrosensory ampullary organs develop from the flanks of the sensory ridge. It is unknown to what extent the molecular mechanisms underlying neuromast formation from the zebrafish migrating posterior lateral line primordium are conserved with the as-yet unexplored molecular mechanisms underlying neuromast and ampullary organ formation from elongating lateral line placodes. Here, we report experiments in an electroreceptive non-teleost ray-finned fish, the Mississippi paddlefish Polyodon spathula, that suggest a conserved role for Notch signaling in regulating lateral line organ receptor cell number, but potentially divergent roles for the fibroblast growth factor signaling pathway, both between neuromasts and ampullary organs, and between paddlefish and zebrafish.
Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Peixes/metabolismo , Sistema da Linha Lateral/crescimento & desenvolvimento , Sistema da Linha Lateral/metabolismo , Mecanorreceptores/metabolismo , Receptores Notch/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Peixes/genética , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Receptores Notch/genética , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/inervação , Órgãos dos Sentidos/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
The bristle sensillum of the imago of Drosophila is made of four cells that arise from a sensory organ precursor cell (SOP). This SOP is selected within proneural clusters (PNC) through a mechanism that involves Notch signalling. PNCs are defined through the expression domains of the proneural genes, whose activities enables cells to become SOPs. They encode tissue specific bHLH proteins that form functional heterodimers with the bHLH protein Daughterless (Da). In the prevailing lateral inhibition model for SOP selection, a transcriptional feedback loop that involves the Notch pathway amplifies small differences of proneural activity between cells of the PNC. As a result only one or two cells accumulate sufficient proneural activity to adopt the SOP fate. Most of the experiments that sustained the prevailing lateral inhibition model were performed a decade ago. We here re-examined the selection process using recently available reagents. Our data suggest a different picture of SOP selection. They indicate that a band-like region of proneural activity exists. In this proneural band the activity of the Notch pathway is required in combination with Emc to define the PNCs. We found a sub-group in the PNCs from which a pre-selected SOP arises. Our data indicate that most imaginal disc cells are able to adopt a proneural state from which they can progress to become SOPs. They further show that bristle formation can occur in the absence of the proneural genes if the function of emc is abolished. These results suggest that the tissue specific proneural proteins of Drosophila have a similar function as in the vertebrates, which is to determine the time of emergence and position of the SOP and to stabilise the proneural state.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Neurônios/citologia , Seleção Genética/genética , Órgãos dos Sentidos/metabolismo , Animais , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Neurônios/metabolismo , Receptores Notch , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Sensilas/citologia , Sensilas/crescimento & desenvolvimento , Sensilas/metabolismo , Transdução de Sinais/genéticaRESUMO
Transcriptional cis-regulatory modules (CRMs), or enhancers, are responsible for directing gene expression in specific territories and cell types during development. In some instances, the same gene may be served by two or more enhancers with similar specificities. Here we show that the utilization of dual, or "shadow", enhancers is a common feature of genes that are active specifically in neural precursor (NP) cells in Drosophila. By genome-wide computational discovery of statistically significant clusters of binding motifs for both proneural activator (P) proteins and basic helix-loop-helix (bHLH) repressor (R) factors (a "P+R" regulatory code), we have identified NP-specific enhancer modules associated with multiple genes expressed in this cell type. These CRMs are distinct from those previously identified for the corresponding gene, establishing the existence of a dual-enhancer arrangement in which both modules reside close to the gene they serve. Using wild-type and mutant reporter gene constructs in vivo, we show that P sites in these modules mediate activation by proneural factors in "proneural cluster" territories, whereas R sites mediate repression by bHLH repressors, which serves to restrict expression specifically to NP cells. To our knowledge, our results identify the first direct targets of these bHLH repressors. Finally, using genomic rescue constructs for neuralized (neur), we demonstrate that each of the gene's two NP-specific enhancers is sufficient to rescue neur function in the lateral inhibition process by which adult sensory organ precursor (SOP) cells are specified, but that deletion of both enhancers results in failure of this event.
Assuntos
Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Proteínas de Drosophila/metabolismo , Imuno-Histoquímica , Microscopia Confocal , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Neurogênese/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Nkx5 family members are homeobox transcription factors important for sensory organ development. Several members of the Nkx5 family are expressed in the eye, brain, developing ear, and lateral line. Members of this family have been previously identified in medaka, chick, and mouse. Here, we characterize two members of the Nkx5 family, Nkx5.3 and SOHo, in Xenopus laevis. We verify the identity of X. laevis Nkx5.3 and SOHo by phylogenetic comparison to chicken, medaka, and zebrafish orthologs. Both Nkx5.3 and SOHo are expressed in the developing eye, ear, lateral line system, and cranial neurons as determined by in situ hybridization.
Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Gânglios/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Hibridização In Situ , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Filogenia , Órgãos dos Sentidos/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/anatomia & histologia , Xenopus laevis/metabolismoRESUMO
The recent advances on ascidian pigment sensory organ development and function represent a fascinating platform to get insight on the basic programs of chordate eye formation. This review aims to summarize current knowledge, at the structural and molecular levels, on the two main building blocks of ascidian light sensory organ, i.e. pigment cells and photoreceptor cells. The unique features of these structures (e.g., simplicity and well characterized cell lineage) are indeed making it possible to dissect the developmental programs at single cell resolution and will soon provide a panel of molecular tools to be exploited for a deep developmental and comparative-evolutionary analysis.
Assuntos
Pigmentação , Órgãos dos Sentidos/crescimento & desenvolvimento , Urocordados/crescimento & desenvolvimento , Animais , Evolução Biológica , Linhagem da Célula , Cordados/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva , Melaninas/biossíntese , Melaninas/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Fatores de Transcrição/genética , Urocordados/genética , Visão OcularRESUMO
In mammals, formation of the auditory sensory organ (the organ of Corti) is restricted to a specialized area of the cochlea. However, the molecular mechanisms limiting sensory formation to this discrete region in the ventral cochlear duct are not well understood, nor is it known whether other regions of the cochlea have the competence to form the organ of Corti. Here we identify LMO4, a LIM-domain-only nuclear protein, as a negative regulator of sensory organ formation in the cochlea. Inactivation of Lmo4 in mice leads to an ectopic organ of Corti (eOC) located in the lateral cochlea. The eOC retains the features of the native organ, including inner and outer hair cells, supporting cells, and other nonsensory specialized cell types. However, the eOC shows an orientation opposite to the native organ, such that the eOC appears as a mirror-image duplication to the native organ of Corti. These data demonstrate a novel sensory competent region in the lateral cochlear duct that is regulated by LMO4 and may be amenable to therapeutic manipulation.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genética , Órgão Espiral/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Cóclea/crescimento & desenvolvimento , Feminino , Técnicas de Introdução de Genes , Proteínas com Domínio LIM/antagonistas & inibidores , Proteínas com Domínio LIM/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Órgãos dos Sentidos/crescimento & desenvolvimentoRESUMO
In Drosophila melanogaster, cis-regulatory modules that are activated by the Notch cell-cell signaling pathway all contain two types of transcription factor binding sites: those for the pathway's transducing factor Suppressor of Hairless [Su(H)] and those for one or more tissue- or cell type-specific factors called "local activators." The use of different "Su(H) plus local activator" motif combinations, or codes, is critical to ensure that only the correct subset of the broadly utilized Notch pathway's target genes are activated in each developmental context. However, much less is known about the role of enhancer "architecture"--the number, order, spacing, and orientation of its component transcription factor binding motifs--in determining the module's specificity. Here we investigate the relationship between architecture and function for two Notch-regulated enhancers with spatially distinct activities, each of which includes five high-affinity Su(H) sites. We find that the first, which is active specifically in the socket cells of external sensory organs, is largely resistant to perturbations of its architecture. By contrast, the second enhancer, active in the "non-SOP" cells of the proneural clusters from which neural precursors arise, is sensitive to even simple rearrangements of its transcription factor binding sites, responding with both loss of normal specificity and striking ectopic activity. Thus, diverse cryptic specificities can be inherent in an enhancer's particular combination of transcription factor binding motifs. We propose that for certain types of enhancer, architecture plays an essential role in determining specificity, not only by permitting factor-factor synergies necessary to generate the desired activity, but also by preventing other activator synergies that would otherwise lead to unwanted specificities.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas do Tecido Nervoso , Receptores Notch , Proteínas Repressoras , Animais , Sítios de Ligação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Órbita/citologia , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Transdução de SinaisRESUMO
Notch signalling is involved in numerous cellular processes during development and throughout adult life. Although ligands and receptors are largely expressed in the whole organism, activation of Notch receptors only takes place in a subset of cells and/or tissues and is accurately regulated in time and space. Previous studies have demonstrated that endocytosis and recycling of both ligands and/or receptors are essential for this regulation. However, the precise endocytic routes, compartments and regulators involved in the spatiotemporal regulation are largely unknown. In order to identify intracellular trafficking regulators of Notch signalling, we have undertaken a tissue-specific dsRNA genetic screen of candidates potentially involved in endocytosis and recycling within the endolysosomal pathway. dsRNA against 418 genes was induced in the Drosophila melanogaster sensory organ lineage in which Notch signalling regulates binary cell fate acquisition. Gain or loss of Notch signalling phenotypes were observed in adult sensory organs for 113 of them. Furthermore, 26 genes were found to regulate the steady state localisation of Notch, Sanpodo, a Notch co-factor, and/or Delta in the pupal lineage. In particular, we identified 20 genes with previously unknown function in D. melanogaster intracellular trafficking. Among them, we identified CG2747 and we show that it regulates the localisation of clathrin adaptor AP-1 complex, a negative regulator of Notch signalling. Together, our results further demonstrate the essential function of intracellular trafficking in regulating Notch-signalling-dependent binary cell fate acquisition and constitute an additional step toward the elucidation of the routes followed by Notch receptor and ligands during signalling.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Endocitose/genética , Receptores Notch , Animais , Divisão Celular Assimétrica/genética , Diferenciação Celular , Linhagem da Célula , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Ligantes , Fenótipo , RNA de Cadeia Dupla/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismoRESUMO
microRNA are small non-coding RNA that modulate gene expression post-transcriptionally. Discovered 20 years ago, their individual functions start to be unraveled. Collectively, functional studies point to an important functional plasticity of microRNA, along the course of evolution, and across different cellular contexts. This is the case in particular for one of them, miR-9, a key factor of the regulation of the neural progenitor state in Vertebrates.
Assuntos
MicroRNAs/fisiologia , Neurogênese/fisiologia , Animais , Evolução Molecular , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Órgãos dos Sentidos/crescimento & desenvolvimento , VertebradosRESUMO
All vertebrates can produce new neurons postnatally in discrete regions of their nervous system, but only some lower vertebrates (fish and amphibians) can significantly repair several neural structures, including brain, spinal cord, retina, olfactory and auditory-vestibular system, to compensate for neural tissue loss and recover significant functionality. Some regenerative ability, however, is found also in reptiles and birds, and even in mammals. The recognition that neurogenesis indeed occurs in the CNS of all adult vertebrates challenges the view that there is a simple relationship between maintenance of neurogenic regions in the adult CNS and regenerative capability. The aim of this review is to revisit this relationship in the light of recent literature focusing on selected examples of neurogenesis and regeneration, and discuss possible frameworks that may help to elucidate the relationship between adult neurogenesis and regeneration. This could provide useful paradigms for harnessing regeneration in the human CNS.
Assuntos
Evolução Biológica , Neurogênese/fisiologia , Neurônios/fisiologia , Adulto , Animais , Encéfalo/crescimento & desenvolvimento , Humanos , Regeneração Nervosa/fisiologia , Retina/crescimento & desenvolvimento , Órgãos dos Sentidos/crescimento & desenvolvimento , Medula Espinal/crescimento & desenvolvimento , VertebradosRESUMO
Cell-fate diversity is generated in part by the unequal segregation of cell-fate determinants during asymmetric cell divisions. In the Drosophila pupa, the pI sense organ precursor cell is polarized along the anterior-posterior axis of the fly and divides asymmetrically to generate a posterior pIIa cell and an anterior pIIb cell. The anterior pIIb cell specifically inherits the determinant Numb and the adaptor protein Partner of Numb (Pon). By labelling both the Pon crescent and the microtubules in living pupae, we show that determinants localize at the anterior cortex before mitotic-spindle formation, and that the spindle forms with random orientation and rotates to line up with the Pon crescent. By imaging living frizzled (fz) mutant pupae we show that Fz regulates the orientation of the polarity axis of pI, the initiation of spindle rotation and the unequal partitioning of determinants. We conclude that Fz participates in establishing the polarity of pI.
Assuntos
Padronização Corporal/genética , Divisão Celular/genética , Linhagem da Célula/genética , Polaridade Celular/genética , Proteínas de Drosophila , Drosophila/crescimento & desenvolvimento , Proteínas de Membrana/genética , Fuso Acromático/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Receptores Frizzled , Proteínas de Fluorescência Verde , Indicadores e Reagentes/análise , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Proteínas Luminescentes/análise , Proteínas de Membrana/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Prófase/genética , Pupa/citologia , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Receptores Acoplados a Proteínas G , Rotação , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Transdução de Sinais/genéticaRESUMO
Asymmetric partitioning of cell-fate determinants during development requires coordinating the positioning of these determinants with orientation of the mitotic spindle. In the Drosophila peripheral nervous system, sensory organ progenitor cells (SOPs) undergo several rounds of division to produce five cells that give rise to a complete sensory organ. Here we have observed the asymmetric divisions that give rise to these cells in the developing pupae using green fluorescent protein fusion proteins. We find that spindle orientation and determinant localization are tightly coordinated at each division. Furthermore, we find that two types of asymmetric divisions exist within the sensory organ precursor cell lineage: the anterior-posterior pI cell-type division, where the spindle remains symmetric throughout mitosis, and the strikingly neuroblast-like apical-basal division of the pIIb cell, where the spindle exhibits a strong asymmetry at anaphase. In both these divisions, the spindle reorientates to position itself perpendicular to the region of the cortex containing the determinant. On the basis of these observations, we propose that two distinct mechanisms for controlling asymmetric cell divisions occur within the same lineage in the developing peripheral nervous system in Drosophila.
Assuntos
Divisão Celular/genética , Linhagem da Célula/genética , Proteínas de Drosophila , Drosophila/crescimento & desenvolvimento , Neurônios Aferentes/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Células-Tronco/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Receptores Frizzled , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde , Indicadores e Reagentes/análise , Interfase/genética , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Proteínas Luminescentes/análise , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios Aferentes/citologia , Neuropeptídeos , Pupa/citologia , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Receptores Acoplados a Proteínas G , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Células-Tronco/citologiaRESUMO
BACKGROUND: The conserved Notch signaling pathway regulates cell fate decisions and maintains stem cells in multicellular organisms. Up-regulation of Notch signaling is observed in several types of cancer and is causally involved in proliferation and survival of cancer cells. Thus, it is of great interest to look for anti-Notch reagents for therapeutic purposes. In model animal Drosophila, Notch signaling restricts selection of sensory organ precursors (SOPs) during external sensory (ES) organ development. To look for novel genes that can suppress Notch signaling, we performed a gain-of-function modifier screen to look for genes that enhance the phenotype of ectopic ES organs induced by overexpression of phyllopod, a gene required for SOP specification. RESULTS: From the gain-of-function screen, we discovered that overexpression of polished rice/tarsal-less (pri/tal) increases the numbers of ES organs as well as SOPs. pri/tal is a polycistronic gene that contains four short open reading frames encoding three 11-amino acid and one 32-amino acid peptides. Ectopic expression of the 11 amino-acid peptides recapitulates the pri/tal misexpression phenotype in ectopic ES organ formation. In situ hybridization experiment reveals that pri/tal mRNA is expressed in the SOPs of the chemosensory organs and the stretch-sensing chordotonal organs.In Drosophila wing development, the Notch signaling pathway mediates the formation of the dorsal-ventral (DV) compartmental boundary and the restriction of the vein width from the primordial veins, the proveins. We also found that pri/tal mRNA is expressed in the DV boundary and the longitudinal proveins, and overexpression of Pri/Tal peptides disrupts the DV boundary formation and helps to expand the width of the wing vein. Genetic analyses further show that a Notch loss-of-function allele strongly enhances these two phenotypes. Cut and E(spl)mß are target genes of the Notch pathway in DV boundary formation and vein specification, respectively. We also found that overexpression of Pri/Tal peptides abolishes Cut expression and co-expression of Pri/Tal peptides with phyl strongly reduces E(spl)mß expression. CONCLUSIONS: We show for the first time that the overexpression of Pri/Tal 11-amino acid peptides disrupts multiple Notch-mediated processes and reduces Notch target gene expression in Drosophila, suggesting that these peptides have novel antagonistic activity to the Notch pathway. Thus, our discovery might provide insights into designing new therapeutic reagents for Notch-related diseases.