RESUMO
Paraquat (PQ) is a highly effective and highly toxic herbicide that is highly toxic to both humans and animals. Pulmonary fibrosis is the primary cause of fatality in patients with PQ poisoning, there is no effective drug treatment yet. 2-Methoxyestradiol (2ME) is a natural metabolite of estradiol with anti-tumor, anti-angiogenesis, and anti-proliferative effects. Whether 2ME has the potential to inhibit pulmonary fibrosis induced by PQ is unclear. This study aims to investigate the potential effects and mechanism of 2ME on PQ-induced pulmonary fibrosis. C57BL/6 mice and A549 cells were exposed to PQ to establish pulmonary fibrosis model. In vivo, Hematoxylin and eosin (H&E) staining was utilized to assess the pathological characteristics. Masson's trichrome staining was employed to evaluate the collagen deposition. Western blot and immunohistochemistry were conducted to determine the expressions of fibrosis markers. In vitro, the expressions of epithelial-mesenchymal transition (EMT) markers were detected using western blot and immunofluorescence to evaluated the potential inhibition of PQ-induced EMT by 2ME. And proteins associated with the TGF-ß1/Smad2/3 signaling pathway were measured by western blot in vivo and in vitro. The result found that 2ME can ameliorated PQ-induced pulmonary fibrosis and inhibit the activation of TGF-ß1/Smad2/3 signaling pathway. These findings suggest that 2ME may serve as a potential therapeutic agent for treating PQ-induced pulmonary fibrosis.
Assuntos
Paraquat , Fibrose Pulmonar , Humanos , Camundongos , Animais , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Camundongos Endogâmicos C57BL , Transdução de SinaisRESUMO
Diabetes mellitus is associated with series of macrovascular and microvascular pathological changes that cause a wide range of complications. Diabetic patients are highly susceptible to hindlimb ischemia (HLI), which remains incurable. Evidence shows that skeletal muscle cells secrete a number of angiogenic factors to promote neovascularization and restore blood perfusion, this paracrine function is crucial for therapeutic angiogenesis in diabetic HLI. In this study we investigated whether sotagliflozin, an anti-hyperglycemia SGLT2 inhibitor, exerted therapeutic angiogenesis effects in diabetic HLI in vitro and in vivo. In C2C12 skeletal muscle cells, we showed that high glucose (HG, 25 mM) under hypoxia markedly inhibited cell viability, proliferation and migration potentials, which were dose-dependently reversed by pretreatment with sotagliflozin (5-20 µM). Sotagliflozin pretreatment enhanced expression levels of angiogenic factors HIF-1α, VEGF-A and PDGF-BB in HG-treated C2C12 cells under hypoxia as well as secreted amounts of VEGF-A and PDGF-BB in the medium; pretreatment with the HIF-1α inhibitor 2-methoxyestradiol (2-ME2, 10 µM) or HIF-1α knockdown abrogated sotagliflozin-induced increases in VEGF-A and PDGF-BB expression, as well as sotagliflozin-stimulated cell proliferation and migration potentials. Furthermore, the conditioned media from sotagliflozin-treated C2C12 cells in HG medium enhanced the migration and proliferation capabilities of vascular endothelial and smooth muscle cells, two types of cells necessary for forming functional blood vessels. In vivo study was conducted in diabetic mice subjected to excising the femoral artery of the left limb. After the surgery, sotagliflozin (10 mg/kg) was directly injected into gastrocnemius muscle of the left hindlimb once every 3 days for 3 weeks. We showed that intramuscular injection of sotagliflozin effectively promoted the formation of functional blood vessels, leading to significant recovery of blood perfusion in diabetic HLI mice. Together, our results highlight a new indication of SGLT2 inhibitor sotagliflozin as a potential therapeutic angiogenesis agent for diabetic HLI.
Assuntos
Diabetes Mellitus Experimental , Inibidores do Transportador 2 de Sódio-Glicose , 2-Metoxiestradiol/metabolismo , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Indutores da Angiogênese/farmacologia , Animais , Becaplermina/farmacologia , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Glicosídeos , Membro Posterior , Hipóxia/tratamento farmacológico , Injeções Intramusculares , Isquemia/tratamento farmacológico , Isquemia/patologia , Camundongos , Músculo Esquelético/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Assuntos
Neoplasias do Sistema Nervoso Central/patologia , NF-kappa B/metabolismo , 2-Metoxiestradiol/química , 2-Metoxiestradiol/metabolismo , 2-Metoxiestradiol/uso terapêutico , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/metabolismo , Criança , Glioma/metabolismo , Glioma/patologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , NF-kappa B/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismoRESUMO
Background: The overall survival of melanoma patients remains poor despite advancements in surgical treatment and targeted therapies. Therefore, there is a need to develop new therapeutic strategies for melanoma. 2-methoxyestradiol (2-ME) is a major metabolite of estrogen that has been shown to have anti-tumor effects against many malignancies. However, the effects and mechanisms of action of 2-ME against melanoma remain unclear.Materials and methods: Melanoma cells (B16) were treated with 2-ME in vitro. Cell proliferation was detected by CCK8 and clone formation, transwell was carried out to measure the migration of B16 cells with or without 2-ME. Flow cytometry was performed to measure the apoptosis and cell cycle. C57BL/6 mice were used for tumor-bearing of B16 cells, tumor volumes were measured once a day, and sacrificed after it was over 2000 mm3, then immunofluorescence was implemented to examine the marker of CD3, CD8 and PD-L1.Results: In our study, we found that 2-ME significantly affected the proliferation, migration, apoptosis, and cell cycle of melanoma in vitro. Our results also showed that 2-ME had strong anti-tumor effects against melanoma in vivo and increased the infiltration of tumor-specific cytotoxic lymphocytes CD8+ T cells in the tumor microenvironment. Besides, PD-L1 expression in tumor cells was significantly higher in the 2-ME-treated group than in the control group, indicating that 2-ME could exhibit stronger anti-tumor effects against melanoma if combined with PD-1 blockade therapy.Conclusion: 2-ME suppresses melanoma in vivo and in vitro and is a promising synergistic enhancer of PD-1 blockade immunotherapy.
Assuntos
2-Metoxiestradiol , Imunidade Adaptativa , Melanoma Experimental , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Ciclo Celular , Proliferação de Células , Imunoterapia/métodos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo , Microambiente TumoralRESUMO
Erlotinib, an EGFR tyrosine kinase inhibitor has been introduced into cancer chemotherapy. However, the therapeutic effects of erlotinib in hepatocellular carcinoma (HCC) remain vaguely understood. Our previous study found that a hypoxia-mediated PLAGL2-EGFR-HIF-1/2α signaling loop in HCC decreased response to erlotinib. The current study has demonstrated that the combination of erlotinib and 2ME2 exerted synergistic antitumor effects against HCC. Further investigation showed that erlotinib increased the expression level of EGFR, HIF-2α, and PLAGL2, which contributes to the insensitivity of hypoxic HCC cells to erlotinib. The simultaneous exposure to 2ME2 effectively inhibited the expression level of EGFR, HIF-2α, and PLAGL2 that was induced by erlotinib. This contributes to the synergistic effect of the two therapeutic agents. Furthermore, the combination of erlotinib and 2ME2 induced apoptosis and inhibited the stemness of hypoxic HCC cells. Our findings potentially explain the mechanism of HCC insensitivity to erlotinib and provide a new strategy of combining EGFR and HIF1/2α inhibitors for HCC treatment.
Assuntos
2-Metoxiestradiol/uso terapêutico , Antineoplásicos/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , 2-Metoxiestradiol/administração & dosagem , 2-Metoxiestradiol/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/administração & dosagem , Cloridrato de Erlotinib/farmacologia , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Transplante de NeoplasiasRESUMO
By reducing their metabolism, dipeptidyl peptidase 4 inhibition (DPP4I) enhances the effects of numerous peptides including neuropeptide Y1-36 (NPY1-36), peptide YY1-36 (PYY1-36), and SDF-1α Studies show that separately NPY1-36, PYY1-36 and SDF-1α stimulate proliferation of, and collagen production by, cardiac fibroblasts (CFs), preglomerular vascular smooth muscle cells (PGVSMCs), and glomerular mesangial cells (GMCs), particularly in cells isolated from genetically hypertensive rats. Whether certain combinations of these factors, in the absence or presence of DPP4I, are more profibrotic than others is unknown. Here we contrasted 24 different combinations of conditions (DPP4I, hypertensive genotype and physiologic levels [3 nM] of NPY1-36, PYY1-36, or SDF-1α) on proliferation of, and [3H]-proline incorporation by, CFs, PGVSMCs, and GMCs. In all three cell types, the various treatment conditions differentially increased proliferation and [3H]-proline incorporation, with a hypertensive genotype + DPP4I + NPY1-36 + SDF-1α being the most efficacious combination. Although the effects of this four-way combination were similar in male versus female CFs, physiologic (1 nM) concentrations of 2-methoxyestradiol (2ME; nonestrogenic metabolite of 17ß-estradiol), abolished the effects of this combination in both male and female CFs. In conclusion, this study demonstrates that CFs, PGVSMCs, and GMCs are differentially activated by various combinations of NPY1-36, PYY1-36, SDF-1α, a hypertensive genetic background and DPP4I. We hypothesize that as these progrowth conditions accumulate, a tipping point would be reached that manifests in the long term as organ fibrosis and that 2ME would obviate any profibrotic effects of DPP4I, even under the most profibrotic conditions (i.e., hypertensive genotype with high NPY1-36 + SDF-1α levels and low 2ME levels). SIGNIFICANCE STATEMENT: This work elucidates combinations of factors that could contribute to long-term profibrotic effects of dipeptidyl peptidase 4 inhibitors and suggests a novel drug combination that could prevent any potential profibrotic effects of dipeptidyl peptidase 4 inhibitors while augmenting the protective effects of this class of antidiabetic agents.
Assuntos
2-Metoxiestradiol/farmacologia , Quimiocina CXCL12/sangue , Colágeno/biossíntese , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipertensão/sangue , Neuropeptídeo Y/sangue , Fragmentos de Peptídeos/sangue , 2-Metoxiestradiol/uso terapêutico , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Feminino , Hipertensão/genética , Hipertensão/patologia , Masculino , Peptídeo YY/sangue , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKYRESUMO
Concentrations of 2-methoxyestradiol (2ME2), a principal metabolite of estradiol, are significantly lower in women with severe preeclampsia. Nitric oxide (NO) released by endothelial nitric oxide synthase (eNOS) plays an important role in regulating cardiovascular homeostasis. Importantly, high-density lipoprotein (HDL) stimulates eNOS activity via endothelial human scavenger receptor class B type I (hSR-BI/CLA-1). Here, we aimed to determine the effect of 2ME2 on hSR-BI/CLA-1 expression in human umbilical vein endothelial cells (HUVECs). hSR-BI/CLA-1 expression was measured by real-time PCR, western blotting and reporter gene assays; eNOS activity was assessed by the measurement of eNOS phosphorylation. Both the mRNA and protein concentrations of hSR-BI/CLA-1 were significantly increased by 2ME2 in HUVECs. 2ME2 also dose-dependently increased the transcriptional activity of the hSR-BI/CLA-1 promoter. The effect of 2ME2 treatment on the promoter activity of hSR-BI/CLA-1 was abrogated by treatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase, as was the increase in HDL-induced eNOS activation. Notably, constitutively active Akt increased the activity of the hSR-BI/CLA-1 promoter, whereas dominant-negative Akt abolished the effect of 2ME2 treatment on hSR-BI/CLA-1 promoter activity. The nuclear Sp1 protein concentration was significantly increased by exposure to 2ME2 and Sp1 overexpression increased the promoter activity of the hSR-BI/CLA gene. Furthermore, knockdown of Sp1 inhibited the effect of 2ME2 treatment on hSR-BI/CLA-1 protein expression. These results indicate that 2ME2 treatment increases HDL-dependent eNOS phosphorylation by upregulating endothelial hSR-BI/CLA-1 expression, suggesting that 2ME2 has a potential therapeutic value in the treatment of preeclampsia.
Assuntos
2-Metoxiestradiol/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , 2-Metoxiestradiol/uso terapêutico , Western Blotting , Imunoprecipitação da Cromatina , Feminino , Humanos , Lipoproteínas HDL/metabolismo , Óxido Nítrico/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , GravidezRESUMO
Hepatocellular carcinoma (HCC) is associated with a poor prognosis. 2-methoxyestradiol (2-ME) is currently under preclinical evaluation as a treatment for many malignancies, but the utility of the drug in terms of HCC treatment remains unclear. Here, we explored the effect of 2-ME on human huh7 cell proliferation and apoptosis and discuss the possible molecular mechanisms involved. The MTT assay showed that proliferation was markedly inhibited by 2-ME (at 5, 10, 15, and 20⯵mol/L) in a time- and dose-dependent manner. Moreover, flow cytometry indicated that 2-ME induced cell cycle arrest at the G2/M phase, and early apoptosis. We used Western blotting and PCR to detect the expression of vascular endothelial growth factor (VEGF) and Bcl-2; 2-ME decreased the mRNA/protein expression levels of both effectors. Furthermore, 2-ME remarkably suppressed xenograft tumor growth in nude mice, and no visible toxicity was observed in either the liver or kidneys. Immunohistochemically, the Bcl-2 and VEGF expression levels were significantly lower than those of controls. Thus, 2-ME inhibited huh7 cell proliferation, promoted apoptosis, and suppressed xenograft tumor growth in nude mice, perhaps reflecting the effects of the drug on VEGF and Bcl-2 expression.
Assuntos
2-Metoxiestradiol/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , 2-Metoxiestradiol/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos NusRESUMO
Leiomyomas, the most common benign neoplasms of the female reproductive tract, currently have limited medical treatment options. Drugs targeting estrogen/progesterone signaling are used, but side effects and limited efficacy in many cases are major limitation of their clinical use. Previous studies from our laboratory and others demonstrated that 2-methoxyestradiol (2-ME) is promising treatment for uterine fibroids. However, its poor bioavailability and rapid degradation hinder its development for clinical use. The objective of this study is to evaluate the in vivo effect of biodegradable and biocompatible 2-ME-loaded polymeric nanoparticles in a patient-derived leiomyoma xenograft mouse model. PEGylated poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles loaded with 2-ME were prepared by nanoprecipitation. Female 6-week age immunodeficient NOG (NOD/Shi-scid/IL-2Rγnull) mice were used. Estrogen-progesterone pellets were implanted subcutaneously. Five days later, patient-derived human fibroid tumors were xenografted bilaterally subcutaneously. Engrafted mice were treated with 2-ME-loaded or blank (control) PEGylated nanoparticles. Nanoparticles were injected intraperitoneally and after 28 days of treatment, tumor volume was measured by caliper following hair removal, and tumors were removed and weighed. Up to 99.1% encapsulation efficiency was achieved, and the in vitro release profile showed minimal burst release, thus confirming the high encapsulation efficiency. In vivo administration of the 2-ME-loaded nanoparticles led to 51% growth inhibition of xenografted tumors compared to controls (P < 0.01). Thus, 2-ME-loaded nanoparticles may represent a novel approach for the treatment of uterine fibroids.
Assuntos
Leiomioma , Nanopartículas , Humanos , Camundongos , Feminino , Animais , 2-Metoxiestradiol/uso terapêutico , Progesterona , Xenoenxertos , Mercaptoetanol/uso terapêutico , Camundongos Endogâmicos NOD , Leiomioma/tratamento farmacológico , Leiomioma/patologia , Polímeros , Polietilenoglicóis , EstrogêniosRESUMO
PURPOSE: The aim of this study was to explore the effect and mechanism of pirfenidone (PFD) combined with 2-methoxyestradiol (2-ME2) perfusion through portal vein on hepatic artery hypoxia-induced hepatic fibrosis. MATERIALS AND METHODS: Sprague-Dawley rats were divided into 5 groups (n â= â3/group): control group, hepatic artery ligation (HAL) group, HAL â+ âPFD (portal vein perfusion of PFD) group, HAL+2-ME2 (portal vein perfusion of 2-ME2) group and HAL â+ âPFD+2-ME2 group depending on whether they received HAL and/or portal vein perfusion (PFD and/or 2-ME2). Livers were harvested for pathology, western blotting (WB), and quantitative real-time PCR (qRT-PCR). RESULTS: Sirius red staining showed that portal vein perfusion of drugs resulted in degradation of liver fibrosis. Immunohistochemistry showed decreased hypoxia-inducible factor-1 α (HIF-1α) and α-smooth muscle actin (α-SMA) after portal intravenous drugs infusion compared with HAL group (P â< â0.05). WB analysis showed increased Smad7 in HAL â+ âPFD group compared with HAL group (P â< â0.05). qRT-PCR analysis showed decreased matrix metallo-proteinase 2 (MMP2), transforming growth factor ß1 (TGF-ß1), monocyte chemoattractant protein-1 (MCP-1), and Collagen I mRNA in HAL â+ âPFD group except for tissue inhibitor of metalloproteinase-1 (TIMP-1) compared with HAL group (P â< â0.05). Compared with HAL â+ âPFD group, the addition of 2-ME2 did not lead to better results in qRT-PCR analysis. CONCLUSIONS: The portal vein perfusion of PFD significantly reduced the hepatic artery hypoxia-induced fibrosis degree in treated rats by down-regulating the expression of HIF-1α, α-SMA, MMP2, TGF-ß1, MCP-1, and Collagen I, as well as up-regulating the TIMP-1 expression and Smad7 protein level. Combined 2-ME2 infusion was not better than PFD alone.
Assuntos
Artéria Hepática , Veia Porta , Ratos , Animais , Artéria Hepática/metabolismo , Veia Porta/metabolismo , Fator de Crescimento Transformador beta1/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo , Metaloproteinase 2 da Matriz , Inibidor Tecidual de Metaloproteinase-1/genética , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Ratos Sprague-Dawley , Cirrose Hepática/tratamento farmacológico , Fibrose , Perfusão , Hipóxia , ColágenoRESUMO
Psoriasis is characterized by hyperproliferative keratinocytes, dilated capillaries and leukocyte infiltration. 2-Methoxyestradiol (2-ME) has shown significant inhibition on proliferation, angiogenesis and inflammation. To evaluate the anti-psoriatic potential of 2-ME, psoriasis-like dermatitis was induced by topical application of imiquimod (IMQ) on the dorsal skin of C57BL/6 mice for seven consecutive days, followed by treatment of vehicle or 2-ME ointment from Day 4 on. The psoriasis area and severity index (PASI) was assessed daily. On Day 8, skin histology and spleen index were assessed. The effects of 2-ME on the proliferation, apoptosis, cell cycle, vascular endothelial growth factor A (VEGFA), and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways of HaCaT cells stimulated by interleukin-17 (IL-17A) were detected, together with its effect on the proliferation, tube formation and VEGF receptor expression of human umbilical vein endothelial cells (HUVECs). We found that topical 2-ME treatment significantly improved IMQ-induced psoriasis-like dermatitis and decreased the PASI scores, the activation of STAT3 in the skin (P < 0.05), and the spleen index in mice (P < 0.01). In vitro, 2-ME inhibited the proliferation of HaCaT cells by inducing apoptosis and G2/M phase arrest (P < 0.01). Moreover, 2-ME suppressed IL-17A-induced VEGFA (2.5 µM: P < 0.05; 5 µM: P < 0.01) and phosphorylation of STAT3 by blocking p-JAK1 in HaCaT cells and prevented tube formation (P < 0.01) and proliferation by targeting VEGF receptors 1 (VEGFR1) and 2 (VEGFR2) in HUVECs. We conclude that 2-ME alleviated psoriasis in vivo and in vitro by inhibiting JAK1/STAT3 pathway and was a promising therapeutic agent for psoriasis.
Assuntos
Dermatite , Psoríase , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Animais , Proliferação de Células , Dermatite/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Imiquimode/efeitos adversos , Interleucina-17/metabolismo , Janus Quinase 1 , Queratinócitos , Mercaptoetanol/metabolismo , Mercaptoetanol/farmacologia , Mercaptoetanol/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pomadas/efeitos adversos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Fator de Transcrição STAT3 , Pele , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
OBJECTIVE: Prostate cancer is one of the most frequently diagnosed cancer in men and ranks as the second most common cause of cancer-related deaths in developed countries. HN1 is a highly expressed gene in prostate cancer and controls the levels of several cell cycle regulatory proteins including Cyclin B1. Cyclin B1 is a cell cycle control protein but is also involved in Docetaxel and 2-Methoxyestradiol induced apoptosis. Since Cyclin B1 level may affect chemotherapy success and HN1-Cyclin B1 negative correlation has already been shown, so in this study, we investigated the possible role of HN1 in chemotherapeutic resistance in prostate cancer cells. METHODS: Androgen-dependent and independent prostate cancer cells were used in the study. A full-length human HN1 cDNA fragment was cloned to a mammalian expression vector and this construct was used for overexpression experiments. A siRNA that specifically targets HN1 was used for HN1 depletion experiments. Evaluation of apoptosis was performed by the level of PARP cleavage and an apoptosis kit that measure Caspase 3 activity. RESULTS: The HN1 protein level is decreased in the Docetaxel or 2-Methoxyestradiol treated LNCaP and PC-3 PCa cells whereas the Cyclin B1 level is increased. HN1 overexpression inhibited Docetaxel and 2-Methoxyestradiol induced apoptosis. In concordance, its depletion further stimulated apoptosis in drug-treated cells. However, silencing of Cyclin B1 along with HN1 abolished the increased apoptotic response induced by silencing of HN1 in Docetaxel or 2-Methoxyestradiol treated cells. CONCLUSION: HN1 is an anti-apoptotic molecule and inhibits Docetaxel and 2-Methoxyestradiol induced apoptosis by targeting Cyclin B1.
Assuntos
Apoptose , Neoplasias da Próstata , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Ciclina B1/genética , Ciclina B1/metabolismo , Docetaxel/farmacologia , Humanos , Masculino , Mamíferos/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismoRESUMO
BACKGROUND: Photodynamic therapy (PDT) is known anticancer approach used mainly for topical skin cancer. However, it could serve as an excellent alternative to traditional anticancer therapies, such as chemotherapy or radiotherapy. AIMS: The study aimed to assess the effect of PDT, where the combination of cyanine with 2-methoxyestradiol (2-Me) was used on mammary and ovary adenocarcinoma human cell lines. MATERIALS AND METHODS: The cyanine IR-775 was used as the photosensitizer. Two human malignant adenocarcinoma cell lines - ovary and mammary adenocarcinoma (MDA MB-231 and SKOV-3) were investigated in photodynamic reaction (PDR), with the enhancement of 2-Me. PDR efficiency was evaluated by the MTT test. Photosensitizer intracellular distribution was assessed by fluorescent microscopy. Additionally, apoptotic and oxidative stress markers were investigated by immunocytochemistry staining. RESULTS AND CONCLUSIONS: It was observed that PDR enhanced by 2-Me is effective against two common but different types of cancer. The treatment decreased cells' viability by around 70%. Immunocytochemical staining of SOD2 and caspase-12 indicated apoptosis and oxidative stress induction in tested cell lines. The results suggest that the therapy could be involved in further oncological applications.
Assuntos
Adenocarcinoma , Neoplasias da Mama , Fotoquimioterapia , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Mercaptoetanol/farmacologia , Mercaptoetanol/uso terapêutico , Ovário/metabolismo , Ovário/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêuticoRESUMO
Previously, we showed that peripheral administration of 2-ME (2-methoxyestradiol), a CYP1B1 (cytochrome P450 1B1)-catechol-O-methyltransferase (COMT) generated metabolite of E2 (17ß-Estradiol), protects against angiotensin II-induced hypertension in female mice. The demonstration that central E2 inhibits angiotensin II-induced hypertension, together with the expression of CYP1B1 in the brain, led us to hypothesize that E2-CYP1B1 generated metabolite 2-ME in the brain mediates its protective action against angiotensin II-induced hypertension in female mice. To test this hypothesis, we examined the effect of intracerebroventricularly (ICV) administered E2 in ovariectomized (OVX)-wild-type (Cyp1b1+/+) and OVX-Cyp1b1-/- mice on the action of systemic angiotensin II. ICV-E2 attenuated the angiotensin II-induced increase in mean arterial blood pressure, impairment of baroreflex sensitivity, and sympathetic activity in OVX-Cyp1b1+/+ but not in ICV-injected short interfering (si)RNA-COMT or OVX-Cyp1b1-/- mice. ICV-2-ME attenuated the angiotensin II-induced increase in blood pressure in OVX-Cyp1b1-/- mice; this effect was inhibited by ICV-siRNA estrogen receptor-α (ERα) and G protein-coupled estrogen receptor 1 (GPER1). ICV-E2 in OVX-Cyp1b1+/+ but not in OVX-Cyp1b1-/- mice and 2-ME in the OVX-Cyp1b1-/- inhibited angiotensin II-induced increase in reactive oxygen species production in the subfornical organ and paraventricular nucleus, activation of microglia and astrocyte, and neuroinflammation in paraventricular nucleus. Furthermore, central CYP1B1 gene disruption in Cyp1b1+/+ mice by ICV-adenovirus-GFP (green fluorescence protein)-CYP1B1-short hairpin (sh)RNA elevated, while reconstitution by adenovirus-GFP-CYP1B1-DNA in the paraventricular nucleus but not in subfornical organ in Cyp1b1-/- mice attenuated the angiotensin II-induced increase in systolic blood pressure. These data suggest that E2-CYP1B1-COMT generated metabolite 2-ME, most likely in the paraventricular nucleus via estrogen receptor-α and GPER1, protects against angiotensin II-induced hypertension and neuroinflammation in female mice.
Assuntos
2-Metoxiestradiol/uso terapêutico , Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Citocromo P-450 CYP1B1/metabolismo , Estradiol/farmacologia , Hipertensão/prevenção & controle , Inflamação/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , 2-Metoxiestradiol/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barorreflexo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocromo P-450 CYP1B1/genética , Feminino , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
A hypoxic microenvironment is a hallmark in different types of tumors; this phenomenon participates in a metabolic alteration that confers resistance to treatments. Because of this, it was proposed that a combination of 2-methoxyestradiol (2-ME) and sodium dichloroacetate (DCA) could reduce this alteration, preventing proliferation through the reactivation of aerobic metabolism in lung adenocarcinoma cell line (A549). A549 cells were cultured in a hypoxic chamber at 1% O2 for 72 hours to determine the effect of this combination on growth, migration, and expression of hypoxia-inducible factors (HIFs) by immunofluorescence. The effect in the metabolism was evaluated by the determination of glucose/glutamine consumption and the lactate/glutamate production. The treatment of 2-ME (10 µM) in combination with DCA (40 mM) under hypoxic conditions showed an inhibitory effect on growth and migration. Notably, this reduction could be attributed to 2-ME, while DCA had a predominant effect on metabolic activity. Moreover, this combination decreases the signaling of HIF-3α and partially HIF-1α but not HIF-2α. The results of this study highlight the antitumor activity of the combination of 2-ME 10 µl/DCA 40 mM, even in hypoxic conditions.
Assuntos
2-Metoxiestradiol/uso terapêutico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácido Dicloroacético/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Hipóxia Tumoral , Microambiente Tumoral , 2-Metoxiestradiol/farmacologia , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Dicloroacético/farmacologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Cicatrização/efeitos dos fármacosRESUMO
Metabolic syndrome (MetS) is a common disorder that is associated with hypertension and poses a significant cardiovascular risk. Deactivation of extra-neuronal norepinephrine is mediated by catechol-O-methyltransferase (COMT). Endogenous 2-methoxyestradiol (2ME) is a product of COMT activity. The current study investigated the impact of 2ME on MetS-induced hypertension and the possible alterations in COMT expression and activity in rats. Animals were randomly divided into 4 groups. Group 1 received drinking water and standard food pellets. Groups 2, 3 and 4 were subjected to experimental induction of MetS. Animals in groups 3 and 4 were given daily IP injection of 2ME (25 and 50 mg/kg, respectively). MetS animals showed significant increases in body weight gain and visceral fat, fasting blood glucose and serum insulin and insulin resistance. Meanwhile, MetS was associated with a significant hypertriglyceridemia. Further, MetS significantly increased systolic, diastolic and mean arterial blood pressure. These effects were associated with significant reduction in COMT expression in the liver, kidneys and aorta as well as reduced hepatic activity. 2ME inhibited the alterations in body weight gain, visceral fat accumulation, fasting blood glucose and serum insulin, insulin resistance and serum triglycerides. Elevations in blood pressure were significantly inhibited by 2ME. Also, it attenuated the decrease in liver, kidney and aorta COMT expression and hepatic COMT activity. MetS was associated with elevated epinephrine and norepinephrine levels. Only the higher dose of 2ME significantly mitigated the rise in epinephrine level. In conclusion, 2ME protects against MetS-induced hypertension and averts COMT inhibited expression and activity.
Assuntos
2-Metoxiestradiol/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Catecol O-Metiltransferase/metabolismo , Hipertensão/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , 2-Metoxiestradiol/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Epinefrina/sangue , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Insulina/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Miocárdio/metabolismo , Norepinefrina/sangue , Ratos Wistar , Triglicerídeos/sangueRESUMO
Redox homeostasis is essential for the maintenance of diverse cellular processes. Cancer cells have higher levels of reactive oxygen species (ROS) than normal cells as a result of hypermetabolism, but the redox balance is maintained in cancer cells due to their marked antioxidant capacity. Recently, anticancer therapies that induce oxidative stress by increasing ROS and/or inhibiting antioxidant processes have received significant attention. The acceleration of accumulative ROS disrupts redox homeostasis and causes severe damage in cancer cells. In this review, we describe ROS-inducing cancer therapy and the anticancer mechanism employed by prooxidative agents. To understand the comprehensive biological response to certain prooxidative anticancer drugs such as 2-methoxyestradiol, buthionine sulfoximine, cisplatin, doxorubicin, imexon, and motexafin gadolinium, we propose and visualize the drug-gene, drug-cell process, and drug-disease interactions involved in oxidative stress induction and antioxidant process inhibition as well as specific side effects of these drugs using pathway analysis with a big data-based text-mining approach. Our review will be helpful to improve the therapeutic effects of anticancer drugs by providing information about biological changes that occur in response to prooxidants. For future directions, there is still a need for pharmacogenomic studies on prooxidative agents as well as the molecular mechanisms underlying the effects of the prooxidants and/or antioxidant-inhibitor agents for effective anticancer therapy through selective killing of cancer cells.
Assuntos
2-Metoxiestradiol/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Oxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Animais , Homeostase , Humanos , Oxirredução , Estresse OxidativoRESUMO
Liver fibrosis is a major health problem worldwide due to its serious complications including cirrhosis and liver cancer. 2-Methoxyestradiol (2-ME) is an end metabolite of estradiol with anti-proliferative, antioxidant, and anti-inflammatory activities. However, the protective role of 2-ME in liver fibrosis has not been fully investigated. The aim of this study was to determine the protective effect of 2-ME in carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Animals were injected intraperitoneally with CCl4 twice weekly for 6 weeks. 2-ME 50 mg/kg or 100 mg/kg was administrated intraperitoneally every day over the same period. Our data showed that 2-ME reduced the extent of liver toxicity and fibrosis due to CCl4 exposure. It restored the elevated serum liver enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels and ameliorated oxidative status. In addition, 2-ME significantly reduced collagen deposition and alpha-smooth muscle actin (α-SMA) protein expressions. Furthermore, 2-ME markedly lowered macrophage infiltration and macrophage alternative activation marker chitinase-like molecules (CHI3L3/YM1). The results of this study indicate an important protective activity of 2-ME in liver fibrosis and highlight the role of macrophage recruitment and alternative activation as a possible target.
Assuntos
2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cirrose Hepática Experimental/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Actinas/metabolismo , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/imunologia , Cirrose Hepática Experimental/patologia , Macrófagos/imunologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacosRESUMO
Angiogenesis plays an essential role in tumourigenesis and tumour progression, and anti-angiogenesis therapies have shown promising antitumour effects in solid tumours. 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol, has been regarded as a potential antitumour agent mainly targeting angiogenesis. Here we synthesized a novel series of chalcones based on 2-methoxyestradiol and evaluated their potential activities against tumours. Compound 11e was demonstrated to have potent antiangiogenic activity. Further studies showed that 11e suppressed tumour growth in human breast cancer (MCF-7) xenograft models without obvious side effects. Evaluation of the mechanism revealed that 11e targeted the epithelial to mesenchymal transition (EMT) process in MCF-7â¯cells and inhibited HUVEC migration and then contributed to hindrance of angiogenesis. Thus, 11e may be a promising antitumour agent with excellent efficacy and low toxicity.
Assuntos
2-Metoxiestradiol/análogos & derivados , 2-Metoxiestradiol/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Chalconas/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , 2-Metoxiestradiol/síntese química , 2-Metoxiestradiol/toxicidade , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/toxicidade , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Chalconas/toxicidade , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Nus , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Estereoisomerismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Benign prostatic hyperplasia (BPH) is a common disorder in the male population. 2-Methoxyestradiol (2ME) is an end metabolite of estrogens with pleiotropic pharmacological properties. This study aimed to explore the potential ameliorative effects of 2ME against testosterone-induced BPH in rats. 2-Methoxyestradiol (50 and 100 mg/kg, dissolved in DMSO) prevented the rise in prostatic index and weight in comparison to testosterone-alone-treated animals for 2 weeks. Histological examination indicated that 2ME ameliorated pathological changes in prostate architecture. This was confirmed by the ability of 2ME to decrease the glandular epithelial height when compared to the testosterone group. Also, 2ME improved testosterone-induced oxidative stress as it inhibited the rise in lipid peroxide content and the exhaustion of superoxide dismutase (SOD) activity. The beneficial effects of 2ME against the development of BPH were substantiated by assessing proliferation markers, preventing the rise in cyclin D1 protein expression and enhancing Bax/Bcl2 mRNA ratio. It significantly reduced prostate content of tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), nuclear factor κB (NF-κB), and transforming growth factor ß (TGF-ß). In addition, 2ME reduced hypoxia-inducible factor 1-α (HIF-1α) and phospho-Smad2 (p-Smad2) protein expression compared to the testosterone group. In conclusion, 2ME attenuates experimentally induced BPH by testosterone in rats through, at least partly, inhibition of HIF-1α/TGF-ß/Smad2 axis.