RESUMO
Biofilm formation is a major challenge in the treatment of tuberculosis, leading to poor treatment outcomes and latent infections. The complex and dense extracellular polymeric substances (EPS) of the biofilm provides safe harbour for bacterium enabling persistence against anti-TB antibiotics. In this study, we demonstrated that rifampicin-encapsulated silk fibroin nanoparticles immobilized with antibiofilm enzymes can disrupt the Mycobacterium smegmatis biofilm and facilitate the anti-bacterial action of Rifampicin (RIF). The EPS of M.smegmatis biofilm predominantly comprised of lipids (48.8 ± 1.32 %) and carbohydrates (34.8 ± 4.70 %), similar to tuberculosis biofilms. Pre-formed biofilm eradication screening revealed that hydrolytic enzymes such as ß-Glucosidase, Glucose oxidase, É-Amylase, Acylase, and Phytase can exhibit biofilm eradication of M.smegmatis biofilms. The enzyme-mediated biofilm disruption was associated with a decrease in hydrophobicity of biofilm surfaces. Treatment with ß-glucosidase and Phytase demonstrated a putative biofilm eradication by reducing the total carbohydrates and lipid composition without causing any significant bactericidal activity. Further, Phytase (250 µg/ml) and ß-Glucosidase (112.5 ± 17.6 µg/ml) conjugated rifampicin-loaded silk fibroin nanoparticles (R-SFNs) exhibited an enhanced anti-bacterial activity against pre-formed M.smegmatis biofilms, compared to free rifampicin (32.5±7 µg/ml). Notably, treatment with ß-glucosidase, Phytase and É-amylase immobilized SFNs decreased the biofilm thickness by â¼98.84 % at 6h, compared to control. Thus, the study highlights that coupling anti-mycobacterial drugs with biofilm-eradicating enzymes such as amylase, phytase or ß-glucosidase can be a potential strategy to improve the TB therapeutic outcomes.
Assuntos
Antibacterianos , Biofilmes , Enzimas Imobilizadas , Fibroínas , Mycobacterium smegmatis , Nanopartículas , Rifampina , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Rifampina/farmacologia , Fibroínas/química , Fibroínas/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , 6-Fitase/farmacologia , 6-Fitase/metabolismo , 6-Fitase/química , beta-Glucosidase/metabolismo , beta-Glucosidase/química , Testes de Sensibilidade Microbiana , Glucose Oxidase/farmacologia , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , alfa-Amilases/metabolismo , alfa-Amilases/farmacologia , alfa-Amilases/antagonistas & inibidores , Interações Hidrofóbicas e HidrofílicasRESUMO
Phytate (inositol hexaphosphate) is the major storage form of phosphorus (P) in nature, and phytases catalyze the hydrolysis of P from phytate and the formation of inositol phosphate isomers. In this study, a bacterium that produces phytase was isolated in a phytase screening medium. The bacterium was identified as Klebsiella sp. using phenotypic and molecular techniques. The PhyK phytase gene was successfully amplified from the genome, inserted into the pET-21a (+) vector, and expressed as a recombinant protein in E. Coli BL21. The efficiency of a laboratory phytase (Lab-Ph, PhyK phytase) was determined and compared with a commercial phytase (Com-Ph, Quantum Blue 40P phytase, AB Vista) under an in vitro digestion assay. The native signal peptide effectively facilitated the translocation of the protein to the periplasmic space of E. Coli BL21, resulting in the proper folding of the protein and the manifestation of desirable enzyme activity. The Lab-Ph displayed the temperature and pH optima at 50 °C and 5 respectively. In addition, the Lab-Ph was inactivated at 80 °C. Under an in vitro digestion assay condition, Lab-Ph improved the P solubility coefficient in broiler diets. In comparison, the Com-Ph significantly increased the P solubility coefficient even when compared with the Lab-Ph. In summary, this study has shown that Lab-Ph possesses the necessary biochemical properties to be used in various industrial applications. However, Lab-Ph is extremely sensitive to heat treatment. The Lab-Ph and Com-Ph under an in vitro digestion assay improved the solubility coefficient of P in the broiler diet.
Assuntos
6-Fitase , Galinhas , Escherichia coli , Klebsiella , Proteínas Recombinantes , Solubilidade , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , 6-Fitase/genética , 6-Fitase/química , 6-Fitase/metabolismo , Klebsiella/genética , Klebsiella/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Ração Animal , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Minerais/metabolismo , Minerais/química , Ácido Fítico/metabolismo , Ácido Fítico/químicaRESUMO
Phytase enzyme found in plants, animals, and microorganisms is mainly involved in catalyzing the systematic removal of a phosphate group from phytic acid. Enzyme immobilization is one of the cost-effective methods for the wide usage of enzymes in the industrial sector. This paper reports the covalent immobilization of phytase on glutaraldehyde-activated aluminum oxide beads. The immobilization yield, efficiency, and activation energy were found to be 47.8%, 71.5%, and 15.78 J/mol, respectively. The bound enzyme displayed a shift in pH optima from 5.5 to 4.5, which is more beneficial to increase digestibility in comparison with the free enzyme. Immobilized phytase retained 42.60% of its activity after 1.0 h incubation at 80 °C, whereas free enzyme retained only 4.20% of its activity. Thermodynami increase in half-lives, D-values, enthalpy and free energy change after covalent immobilization could be credited to the enhanced stability. Immobilized phytase could be reused for five consecutive cycles retaining 51% of its initial activity with sodium phytate. The immobilized phytase was also found effective to hydrolyze the soybean meal, thus increasing the digestibility of poultry feed. The hydrolyzing reaction of soybean meal was carried out for six consecutive cycles and immobilized phytase retained nearly 50% of activity till the fifth cycle. The amount of phosphorus released after treatment with immobilized phytase was far higher than that from free phytase. Immobilization on this support is significant, as this support can sustain high mechanical resistance at high pH and temperature. This considerable stability and reusability of the bound enzyme may be advantageous for its industrial application.
Assuntos
6-Fitase , Aspergillus oryzae , 6-Fitase/química , Aspergillus oryzae/metabolismo , Células Imobilizadas/metabolismo , Farinha , Glycine max , Fosfatos , Ácido Fítico/metabolismoRESUMO
BACKGROUND: Phytase catalyses the breakdown of complex organic forms of phosphorous into simpler forms by sequential hydrolysis of phosphate ester bonds to liberate the inorganic phosphate. Supplementation of feeds with bacterial phytase therefore could enhance the bioavailability of phosphorus and micronutrients. Hence, the aim of this study was to isolate and characterize phytase producing bacteria from rhizosphere soil, fresh poultry excreta, and cattle shed to evaluate their potential in improving poultry feeds. Phytase producing bacteria were isolated using wheat bran extract medium. RESULTS: A total of 169 bacterial isolates were purified and screened for phytase activity. Out of these, 36 were confirmed as positive for phytase enzyme activity. The bacterial isolates were identified by cultural, morphological, and biochemical features. The isolates were also identified by using 16 S rRNA gene sequencing. The bacterial isolates (RS1, RS8, RS10 and RS15) were provided with gene bank database accession numbers of MZ407562, MZ407563, MZ407564 and MZ407565 respectively. All isolates increased phytase production when cultured in wheat bran extract medium (pH 6) supplemented with 1% (wt/v) galactose and 1% (wt/v) ammonium sulphate incubated at 50oC for 72 h. Proximate composition analysis after supplementation of phytase showed that phytase supplementation improved bioavailability of phosphorus, calcium, potassium and sodium in poultry feed. CONCLUSIONS: Overall, this study showed that the nutritional value of poultry feed can be improved using microbial phytase enzyme which reduces the cost of supplementation with inorganic phosphate.
Assuntos
6-Fitase , Aves Domésticas , Animais , Bovinos , 6-Fitase/genética , 6-Fitase/análise , 6-Fitase/química , Fósforo , Fosfatos , Fibras na Dieta , Ração Animal/análise , Dieta/veterináriaRESUMO
Phytases are the most widely used food and feed enzymes, which aid in nutritional improvement by reducing anti-nutritional factor. Despite the benefits, enzymes usage in the industry is restricted by several factors such as their short life-span and poor reusability, which result in high costs for large-scale utilization at commercial scale. Furthermore, under pelleting conditions such as high temperatures, pH, and other factors, the enzyme becomes inactive due to lesser stability. Immobilization of phytases has been suggested as a way to overcome these limitations with improved performance. Matrices used to immobilize phytases include inorganic (Hydroxypatite, zeolite, and silica), organic (Polyacrylamide, epoxy resins, alginate, chitosan, and starch agar), soluble matrix (Polyvinyl alcohol), and nanomaterials including nanoparticles, nanofibers, nanotubes. Several surface analysis methods, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR analysis, have been used to characterize immobilized phytase. Immobilized phytases have been used in a broad range of biotechnological applications such as animal feed, biodegradation of food phytates, preparations of myo-inositol phosphates, and sulfoxidation by vanadate-substituted peroxidase. This article provides information on different matrices used for phytase immobilization from the last two decades, including the process of immobilization and support material, surface analysis techniques, and multifarious biotechnological applications of the immobilized phytases.
Assuntos
6-Fitase , Animais , 6-Fitase/química , 6-Fitase/metabolismo , Biotecnologia , Ração Animal , Temperatura Alta , Fosfatos de InositolRESUMO
Phytases are specialized enzymes meant for phytic acid degradation. They possess ability to prevent phytic acid indigestion, including its attendant environmental pollution. This study was aimed at investigating biochemical properties of purified phytase of B. cereus isolated from Achatina fulica. Phytase produced from Bacillus cereus that exhibited optimal phytate degrading-ability of all the bacteria isolated was purified in a three-step purification. The biochemical properties of the purified enzyme were also determined. The phytase homogeny of approximately 45 kDa exhibited 12.8-purification fold and 1.6% yield with optima phytate degrading efficiency and maximum stability at pH 7 and 50 °C. Remaining activity of 52 and 47% obtained between 60 and 70 °C after 2 h further established thermostability of the purified phytase. Mg2+ and Zn2+ enhanced phytate hydrolysis by the enzyme, while Na+ showed mild inhibition but Hg2+ severely inhibited the enzymatic activity. Km and Vmax were estimated to be 0.11 mM and 55.6 µmol/min/mL, displaying enzyme-high substrate affinity and catalytic efficiency, respectively. Phytase purified from Bacillus cereus, isolated from African giant snails, has shown excellent characteristics suitable for phytic acid hydrolysis and could be employed in industrial and biotechnological applications.
Assuntos
6-Fitase , Bacillus cereus , Animais , Bacillus cereus/metabolismo , 6-Fitase/química , 6-Fitase/metabolismo , Ácido Fítico/química , Ácido Fítico/metabolismo , Caramujos/metabolismo , Trato Gastrointestinal , Concentração de Íons de HidrogênioRESUMO
Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.
Assuntos
6-Fitase , Animais , 6-Fitase/química , 6-Fitase/metabolismo , Fermentação , Ácido Fítico/metabolismo , Fósforo , MineraisRESUMO
Aspergillus niger ATCC 10864 phytase A was produced in Penicillium verruculosum. The enzyme was found to have two pH optima of 2.5 and 5.0, as well as a T-optimum of 50-55 °C. Two amino acid substitutions, A76M and S265P, were designed for improvement in thermostability, and two more, N300K and D363N, were designed for improvement in enzyme activity. The most thermostable variant, S265P, was characterized by a 3.8-fold increase in time of half-life at 55 °C and a 1.2-fold increase in residual activity at 90 °C compared to the wild-type. The most active variant, D363N, was 1.7-times more active at 40 °C and retained 1.3-times higher residual activity at 90 °C compared to the wild-type. The obtained results revealed the importance of substitutions with proline in α-helixes for the thermostability improvement of phytases. Also, the importance of sequence motif 361HDN363 was demonstrated with relevance to values of catalytic parameters.
Assuntos
6-Fitase , 6-Fitase/genética , 6-Fitase/química , 6-Fitase/metabolismo , Aspergillus niger , Estabilidade Enzimática , Concentração de Íons de HidrogênioRESUMO
Phytate (myo-inositol hexakisphosphate salts) can constitute a large fraction of the organic P in soils. As a more recalcitrant form of soil organic P, up to 51 million metric tons of phytate accumulate in soils annually, corresponding to â¼65% of the P fertilizer application. However, the availability of phytate is limited due to its strong binding to soils via its highly-phosphorylated inositol structure, with sorption capacity being â¼4 times that of orthophosphate in soils. Phosphorus (P) is one of the most limiting macronutrients for agricultural productivity. Given that phosphate rock is a finite resource, coupled with the increasing difficulty in its extraction and geopolitical fragility in supply, it is anticipated that both economic and environmental costs of P fertilizer will greatly increase. Therefore, optimizing the use of soil phytate-P can potentially enhance the economic and environmental sustainability of agriculture production. To increase phytate-P availability in the rhizosphere, plants and microbes have developed strategies to improve phytate solubility and mineralization by secreting mobilizing agents including organic acids and hydrolyzing enzymes including various phytases. Though we have some understanding of phytate availability and phytase activity in soils, the limiting steps for phytate-P acquisition by plants proposed two decades ago remain elusive. Besides, the relative contribution of plant- and microbe-derived phytases, including those from mycorrhizas, in improving phytate-P utilization is poorly understood. Hence, it is important to understand the processes that influence phytate-P acquisition by plants, thereby developing effective molecular biotechnologies to enhance the dynamics of phytate in soil. However, from a practical view, phytate-P acquisition by plants competes with soil P fixation, so the ability of plants to access stable phytate must be evaluated from both a plant and soil perspective. Here, we summarize information on phytate availability in soils and phytate-P acquisition by plants. In addition, agronomic approaches and biotechnological strategies to improve soil phytate-P utilization by plants are discussed, and questions that need further investigation are raised. The information helps to better improve phytate-P utilization by plants, thereby reducing P resource inputs and pollution risks to the wider environment.
Assuntos
6-Fitase , Ácido Fítico , 6-Fitase/química , 6-Fitase/metabolismo , Fertilizantes , Fosfatos , Fósforo , Ácido Fítico/metabolismo , Plantas/metabolismo , Solo/químicaRESUMO
Among ubiquitous phosphorus (P) reserves in environmental matrices are ribonucleic acid (RNA) and polyphosphate (polyP), which are, respectively, organic and inorganic P-containing biopolymers. Relevant to P recycling from these biopolymers, much remains unknown about the kinetics and mechanisms of different acid phosphatases (APs) secreted by plants and soil microorganisms. Here we investigated RNA and polyP dephosphorylation by two common APs, a plant purple AP (PAP) from sweet potato and a fungal phytase from Aspergillus niger. Trends of δ18O values in released orthophosphate during each enzyme-catalyzed reaction in 18O-water implied a different extent of reactivity. Subsequent enzyme kinetics experiments revealed that A. niger phytase had 10-fold higher maximum rate for polyP dephosphorylation than the sweet potato PAP, whereas the sweet potato PAP dephosphorylated RNA at a 6-fold faster rate than A. niger phytase. Both enzymes had up to 3 orders of magnitude lower reactivity for RNA than for polyP. We determined a combined phosphodiesterase-monoesterase mechanism for RNA and terminal phosphatase mechanism for polyP using high-resolution mass spectrometry and 31P nuclear magnetic resonance, respectively. Molecular modeling with eight plant and fungal AP structures predicted substrate binding interactions consistent with the relative reactivity kinetics. Our findings implied a hierarchy in enzymatic P recycling from P-polymers by phosphatases from different biological origins, thereby influencing the relatively longer residence time of RNA versus polyP in environmental matrices. This research further sheds light on engineering strategies to enhance enzymatic recycling of biopolymer-derived P, in addition to advancing environmental predictions of this P recycling by plants and microorganisms.
Assuntos
6-Fitase , 6-Fitase/química , 6-Fitase/genética , 6-Fitase/metabolismo , Fósforo , Monoéster Fosfórico Hidrolases/metabolismo , Cinética , Simulação de Acoplamento Molecular , Fosfatase Ácida/química , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Polifosfatos , Isótopos , Biopolímeros , RNARESUMO
Changes in the secondary structure of phytase, particularly the conserved active catalytic domain (ACD, SRHGVRAPHD) are extremely important for the varied catalytic activity during hydrolyzing phytate in the presence of humic acid (HA). However, little is known about the molecular-scale mechanisms of how HA influences the secondary structure of ACD found in phytase. First, in situ surface-enhanced Raman spectroscopy (SERS) results show the secondary structure transformation of ACD from the unordered random coil to the ordered ß-sheet structure after treatment with HA. Then, we use an atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) technique that can in situ directly probe the single-molecule interaction of ACD with HA and underlying changes in ACD secondary structure in the approach-retraction cycles in real time. Based on the SMFS results, we further detect the HA-enhanced formation of H-bonding between amide groups in the ACD backbone after noncovalently interacting with HA in the absence of phytate. Following the addition of phytate, the calculated contour length (Lc) and the free energies (ΔGb) of functional groups within ACD(-1/2) binding to mica/HA collectively demonstrate the formation of the organized intermediate structural state of ACD following its covalent binding to phytate. These spectroscopic and single-molecule determinations provide the molecular-scale understanding regarding the detailed mechanisms of HA-enhancement of the ordered ß-sheet secondary structure of ACD through chemical functionalities in ACD noncovalently interacting with HA. Therefore, we suggest that similar studies of the interactions of other soil enzymes and plant nutrients may reveal predominant roles of dissolved organic matter (DOM) in controlling elemental cycling and fate for sustainable agriculture development.
Assuntos
6-Fitase , Substâncias Húmicas , 6-Fitase/química , Domínio Catalítico , Estrutura Secundária de ProteínaRESUMO
BACKGROUND: Reducing anti-nutritional factors like phytates in seed protein products requires an ongoing effort. This study was the first to investigate the phytic acid content in seabuckthorn seed protein (SSP) and its reduction by an exogenous phytase during protein isolation from seabuckthorn seed meal through the common alkaline solubilization-isoelectric precipitation process. RESULTS: The additional phytase treatment could reduce the content of phytic acid from 22.46 to 13.27 g kg-1 , leading to SSP products with lighter color (lower ΔE* ), higher protein solubility, higher in vitro digestibility, but lower phenolic antioxidant content (including flavonoids and procyanidins) and some beneficial ions like Ca, Fe, Mg, and Zn. The Fourier transform infrared (FTIR) results indicated that the secondary structure of protein changed under the treatment with phytase. Correlation analysis showed that L* was significantly negatively correlated with TP, TPC and TF (P < 0.001), while a* and b* were significantly positively correlated with them (P < 0.001). CONCLUSIONS: There may be a trade-off between protein functionalities and other health-promoting components when a phytase treatment is included in SSP isolation. © 2021 Society of Chemical Industry.
Assuntos
6-Fitase/química , Manipulação de Alimentos/métodos , Hippophae/química , Proteínas de Plantas/química , Álcalis/química , Biocatálise , Precipitação Química , Cor , Ácido Fítico/química , Sementes/química , SolubilidadeRESUMO
Pseudomonas aeruginosa infects patients with cystic fibrosis, burns, wounds and implants. Previously, our group showed that elevated Ca2+ positively regulates the production of several virulence factors in P. aeruginosa, such as biofilm formation, production of pyocyanin and secreted proteases. We have identified a Ca2+-regulated ß-propeller putative phytase, CarP, which is required for Ca2+ tolerance, regulation of the intracellular Ca2+ levels, and plays a role in Ca2+ regulation of P. aeruginosa virulence. Here, we studied the conservation of carP sequence and its occurrence in diverse phylogenetic groups of bacteria. In silico analysis revealed that carP and its two paralogues PA2017 and PA0319 are primarily present in P. aeruginosa and belong to the core genome of the species. We identified 155 single nucleotide alterations within carP, 42 of which lead to missense mutations with only three that affected the predicted 3D structure of the protein. PCR analyses with carP-specific primers detected P. aeruginosa specifically in 70 clinical and environmental samples. Sequence comparison demonstrated that carP is overall highly conserved in P. aeruginosa isolated from diverse environments. Such evolutionary preservation of carP illustrates its importance for P. aeruginosa adaptations to diverse environments and demonstrates its potential as a biomarker.
Assuntos
6-Fitase/genética , Proteínas de Bactérias/genética , Cálcio/metabolismo , Pseudomonas aeruginosa/enzimologia , 6-Fitase/química , 6-Fitase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência Conservada , Fibrose Cística/microbiologia , Humanos , Mutação , Filogenia , Domínios Proteicos , Pseudomonas/classificação , Pseudomonas/enzimologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Especificidade da EspécieRESUMO
BACKGROUND: Pichia pastoris (Komagataella phaffii) is an important platform for heterologous protein production due to its growth to high cell density and outstanding secretory capabilities. Recent developments in synthetic biology have extended the toolbox for genetic engineering of P. pastoris to improve production strains. Yet, overloading the folding and secretion capacity of the cell by over-expression of recombinant proteins is still an issue and rational design of strains is critical to achieve cost-effective industrial manufacture. Several enzymes are commercially produced in P. pastoris, with phytases being one of the biggest on the global market. Phytases are ubiquitously used as a dietary supplement for swine and poultry to increase digestibility of phytic acid, the main form of phosphorous storage in grains. RESULTS: Potential bottlenecks for expression of E. coli AppA phytase in P. pastoris were explored by applying bidirectional promoters (BDPs) to express AppA together with folding chaperones, disulfide bond isomerases, trafficking proteins and a cytosolic redox metabolism protein. Additionally, transcriptional studies were used to provide insights into the expression profile of BDPs. A flavoprotein encoded by ERV2 that has not been characterised in P. pastoris was used to improve the expression of the phytase, indicating its role as an alternative pathway to ERO1. Subsequent AppA production increased by 2.90-fold compared to the expression from the state of the AOX1 promoter. DISCUSSION: The microbial production of important industrial enzymes in recombinant systems can be improved by applying newly available molecular tools. Overall, the work presented here on the optimisation of phytase production in P. pastoris contributes to the improved understanding of recombinant protein folding and secretion in this important yeast microbial production host.
Assuntos
6-Fitase/biossíntese , 6-Fitase/química , Fosfatase Ácida/biossíntese , Fosfatase Ácida/química , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Pichia/genética , Dobramento de Proteína , 6-Fitase/metabolismo , Fosfatase Ácida/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Fúngica da Expressão Gênica , Engenharia Genética , Chaperonas Moleculares/metabolismo , Regiões Promotoras Genéticas/genética , Transcrição GênicaRESUMO
Endoxylanase production from M. thermophila BJTLRMDU3 using rice straw was enhanced to 2.53-fold after optimization in solid state fermentation (SSF). Endoxylanase was purified to homogeneity employing ammonium sulfate precipitation followed by gel filtration chromatography and had a molecular mass of ~ 25 kDa estimated by SDS-PAGE. Optimal endoxylanase activity was recorded at pH 5.0 and 60 °C. Purified enzyme showed complete tolerance to n-hexane, but activity was slightly inhibited by other organic solvents. Among surfactants, Tweens (20, 60, and 80) and Triton X 100 slightly enhanced the enzyme activity. The Vmax and Km values for purified endoxylanase were 6.29 µmol/min/mg protein and 5.4 mg/ml, respectively. Endoxylanase released 79.08 and 42.95% higher reducing sugars and soluble proteins, respectively, which control after 48 h at 60 °C from poultry feed. Synergistic effect of endoxylanase (100 U/g) and phytase (15 U/g) on poultry feed released higher amount of reducing sugars (58.58 mg/feed), soluble proteins (42.48 mg/g feed), and inorganic phosphate (28.34 mg/feed) in contrast to control having 23.55, 16.98, and 10.46 mg/feed of reducing sugars, soluble proteins, and inorganic phosphate, respectively, at 60 °C supplemented with endoxylanase only.
Assuntos
Ração Animal , Endo-1,4-beta-Xilanases/química , Sordariales/metabolismo , 6-Fitase/química , Cromatografia em Gel , Fermentação , Concentração de Íons de Hidrogênio , Octoxinol/química , Compostos Orgânicos , Oryza , Solventes/química , Açúcares/química , Tensoativos/química , Temperatura , Água/químicaRESUMO
A simple method for the preparative production of lower-order myo-inositol phosphates was developed. Enzymatic phytate dephosphorylation was applied, because phytate-degrading enzymes generate usually predominantly one single myo-inositol phosphate isomer with five, four, three, two and one phosphate residue(s) bound to the myo-inositol ring in a regio- and stereoselective manner. The relative concentrations of the different lower-order myo-inositol phosphates in the reaction mixture were controlled by adjusting incubation time at 37 °C and a fixed phytate concentration and phytase activity. Purification of the individual lower-order myo-inositol phosphates was realized by anion-exchange chromatography on Q-Sepharose using a stepwise elution with ammonium formate:formic acid pH 2.5. Ethanol precipitation was successfully used to concentrate the pure lower-order myo-inositol phosphates. In a single approach 2-3 mg of pure myo-inositol tetrakis- or -trisphosphate isomers were obtained. About 60% of the initially applied phytate were converted into pure lower-order myo-inositol phosphates. The purified myo-inositol phosphate isomers were virtually free of other myo-inositol phosphate esters and could be used for enzymatic and physiological studies.
Assuntos
Fosfatos de Inositol/química , Ácido Fítico/química , 6-Fitase/química , Cromatografia por Troca Iônica , Fosforilação , EstereoisomerismoRESUMO
BACKGROUND: The study aims to investigate the limitation of a poultry digestive tract model developed by Menezes-Blackburn et al. [J Agric Food Chem 63: 6142-6149 (2015)] on the evaluation of the bioefficacy of phytases. RESULTS: It was confirmed that the in vitro model does not mimic the in vivo situation in the birds sufficiently well to identify the best phytase product under real conditions, or to draw conclusion on the effect of phytate concentration, phytate source or feed composition on the bioefficacy of phytase. Addition of calcium ion (Ca2+ ) up to a concentration of 10 g kg-1 to the feed substrate, for example, did not affect enzymatic phytate dephosphorylation in the in vitro model in contrast to the observation in poultry. CONCLUSION: The in vitro approach was shown to be applicable as a complementary tool in the pre-selection of promising phytase candidates, resulting in a reduction in the number of feeding trials in the initial screening phase. © 2020 The Author. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
6-Fitase/química , Trato Gastrointestinal/enzimologia , Aves Domésticas/metabolismo , 6-Fitase/metabolismo , Animais , Cálcio/química , Cálcio/metabolismo , Catálise , Trato Gastrointestinal/metabolismo , Fosforilação , Ácido Fítico/química , Ácido Fítico/metabolismoRESUMO
Phytases are important commercial enzymes that catalyze the dephosphorylation of myo-inositol hexakisphosphate (phytate) to its lower inositol phosphate (IP) esters, IP6 to IP1. Digestion of phytate by Citrobacter braakii 6-phytase deviates significantly from monophasic Michaelis-Menten kinetics. Analysis of phytate digestion using isothermal titration calorimetry (ITC) using the single injection method produced a thermogram with two peaks consistent with two periods of high enzyme activity. Continuous-flow electrospray ionization time-of-flight mass spectroscopy (ESI-ToF-MS) provided real-time analysis of phytase catalysis. It was able to show that the first two cleavage steps were rapid and concurrent but the third cleavage step from IP4 to IP3 was slow. The third (IP4 to IP3), fourth (IP3 to IP2) and fifth (IP2 to IP1) cleavages were effectively sequential due to the preferred association of the more phosphorylated species with the phytase catalytic site. This created a bottleneck during the cleavage of IP4 to IP3 until the point at which IP4 was exhausted and was followed by the rapid cleavage of IP3 to IP2, which was observed as the second peak in the ITC thermogram. This work illustrates the importance of an orthogonal approach when studying non-specific or complex enzyme catalyzed reactions.
Assuntos
6-Fitase/química , 6-Fitase/metabolismo , Biocatálise , Calorimetria/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Citrobacter/enzimologia , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Cinética , Fosforilação , Ácido Fítico/química , Ácido Fítico/metabolismoRESUMO
Novel enzymatically hardened tetracalcium phosphate/monetite cements were prepared applying phytic acid/phytase (PHYT/F3P) mixture as hardening liquid after dissolving in acetic acid solution (CX cement). Properties of the cements were compared with classic cement hardened with 2% NaH2PO4 (C cement) and cement hardened with acetic acid solution (CAC cement) only. In the microstructure of CX cement, columnar growth of hydroxyapatite particles was found in the form of walls around hydroxyapatite agglomerates originated from tetracalcium phosphate which were mutually separated by a material depleted low density zone. Wet compressive strengths (CS) of all cements were practically identical contrary to about 30% higher dry CS's of CX and CAC cements due to specific microstructure. It was verified noncytotoxic character of CX cement extracts and positive effect of CX cement on ALP activity and cell behavior during cultivation. The final Ca/P molar ratio and setting time of cement were effectively controlled by the amount of phytic acid and the change in PHYT/F3P mass ratio, or reaction time in hardening liquid, respectively.
Assuntos
6-Fitase/metabolismo , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Ácido Fítico/química , 6-Fitase/química , Animais , Linhagem Celular , Sobrevivência Celular , Concentração de Íons de Hidrogênio , Teste de Materiais , CamundongosRESUMO
Cereals and pseudocereals are a rich source of nutrients and trace elements, but their dietary bioavailability is low due to the presence of phytate (IP6), an antinutritional compound with the ability to chelate cations and proteins. Phytase is an enzyme that catalyzes the hydrolysis of IP6 and it is used as an additive improving the nutritional quality of grain-based foods. The aim of this study was to select lactic acid bacteria (LAB) isolated from pseudocereals with phytase activity, characterize their production and activity, and purify the enzyme. LAB strains isolated from grains and spontaneous sourdough of quinoa and amaranth were grown in the Man Rogosa and Sharpe medium where the inorganic phosphate (Pi) was replaced by 1% of IP6. Phytase activity was determined by measuring the Pi released from IP6. Phytase of Lactobacillus (L.) plantarum CRL1964 (PhyLP) showed the highest specific activity from 73 LAB evaluated. IP6 induces PhyLP production, which is at its maximum at the end of the exponential phase. PhyLP was thermostable and maintained its activity under acidic conditions. The enzymatic activity is stimulated by ethylenediaminetetraacetic acid, Co2+, and ascorbic acid. PhyLP was partially purified and showed a molecular mass of 55 kDa. L. plantarum CRL1964 and/or PhyLP have the potential to be included in the processing of cereal/pseudocereals based products for animal feed and/or the food industry improving its nutritional value.