Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.400
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39036999

RESUMO

Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.


Assuntos
Acrossomo , Espermatogênese , Espermatozoides , Animais , Masculino , Espermatogênese/fisiologia , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Acrossomo/metabolismo , Acrossomo/fisiologia , Humanos , Mamíferos/fisiologia , Camundongos , Axonema/metabolismo , Flagelos/fisiologia , Flagelos/metabolismo
2.
PLoS Genet ; 20(6): e1011337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935810

RESUMO

Sperm heads contain not only the nucleus but also the acrosome which is a distinctive cap-like structure located anterior to the nucleus and is derived from the Golgi apparatus. The Golgi Associated RAB2 Interactors (GARINs; also known as FAM71) protein family shows predominant expression in the testis and all possess a RAB2-binding domain which confers binding affinity to RAB2, a small GTPase that is responsible for membrane transport and vesicle trafficking. Our previous study showed that GARIN1A and GARIN1B are important for acrosome biogenesis and that GARIN1B is indispensable for male fertility in mice. Here, we generated KO mice of other Garins, namely Garin2, Garin3, Garin4, Garin5a, and Garin5b (Garin2-5b). Using computer-assisted morphological analysis, we found that the loss of each Garin2-5b resulted in aberrant sperm head morphogenesis. While the fertilities of Garin2-/- and Garin4-/- males are normal, Garin5a-/- and Garin5b-/- males are subfertile, and Garin3-/- males are infertile. Further analysis revealed that Garin3-/- males exhibited abnormal acrosomal morphology, but not as severely as Garin1b-/- males; instead, the amounts of membrane proteins, particularly ADAM family proteins, decreased in Garin3 KO spermatozoa. Moreover, only Garin4 KO mice exhibit vacuoles in the sperm head. These results indicate that GARINs assure correct head morphogenesis and some members of the GARIN family function distinctively in male fertility.


Assuntos
Fertilidade , Infertilidade Masculina , Camundongos Knockout , Cabeça do Espermatozoide , Animais , Masculino , Camundongos , Acrossomo/metabolismo , Fertilidade/genética , Complexo de Golgi/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Morfogênese/genética , Proteína rab2 de Ligação ao GTP/metabolismo , Proteína rab2 de Ligação ao GTP/genética , Cabeça do Espermatozoide/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/crescimento & desenvolvimento
3.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36971361

RESUMO

The development and function of male gametes is dependent on a dynamic microtubule network, yet how this is regulated remains poorly understood. We have recently shown that microtubule severing, via the action of the meiotic AAA ATPase protein clade, plays a crucial role in this process. Here, we sought to elucidate the roles of spastin, an as-yet-unexplored member of this clade in spermatogenesis. Using a SpastKO/KO mouse model, we reveal that spastin loss resulted in a complete loss of functional germ cells. Spastin plays a crucial role in the assembly and function of the male meiotic spindle. Consistent with meiotic failure, round spermatid nuclei were enlarged, indicating aneuploidy, but were still able to enter spermiogenesis. During spermiogenesis, we observed extreme abnormalities in manchette structure, acrosome biogenesis and, commonly, a catastrophic loss of nuclear integrity. This work defines an essential role for spastin in regulating microtubule dynamics during spermatogenesis, and is of potential relevance to individuals carrying spastin variants and to the medically assisted reproductive technology industry.


Assuntos
Acrossomo , Microtúbulos , Animais , Camundongos , Masculino , Espastina/genética , Acrossomo/metabolismo , Microtúbulos/metabolismo , Espermatogênese/genética , Meiose/genética
4.
Proc Natl Acad Sci U S A ; 120(8): e2207263120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787362

RESUMO

Sperm acrosomal membrane proteins, such as Izumo sperm-egg fusion 1 (IZUMO1) and sperm acrosome-associated 6 (SPACA6), play essential roles in mammalian gamete binding or fusion. How their biosynthesis is regulated during spermiogenesis has largely remained elusive. Here, we show that 1700029I15Rik knockout male mice are severely subfertile and their spermatozoa do not fuse with eggs. 1700029I15Rik is a type-II transmembrane protein expressed in early round spermatids but not in mature spermatozoa. It interacts with proteins involved in N-linked glycosylation, disulfide isomerization, and endoplasmic reticulum (ER)-Golgi trafficking, suggesting a potential role in nascent protein processing. The ablation of 1700029I15Rik destabilizes non-catalytic subunits of the oligosaccharyltransferase (OST) complex that are pivotal for N-glycosylation. The knockout testes exhibit normal expression of sperm plasma membrane proteins, but decreased abundance of multiple acrosomal membrane proteins involved in fertilization. The knockout sperm show upregulated chaperones related to ER-associated degradation (ERAD) and elevated protein ubiquitination; strikingly, SPACA6 becomes undetectable. Our results support for a specific, 1700029I15Rik-mediated pathway underpinning the biosynthesis of acrosomal membrane proteins during spermiogenesis.


Assuntos
Acrossomo , Proteínas de Membrana , Animais , Masculino , Camundongos , Acrossomo/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Sêmen/metabolismo , Proteínas de Plasma Seminal/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Óvulo/metabolismo
5.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35950913

RESUMO

Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4-/- testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility.


Assuntos
Acrossomo , Profilinas , Espermátides , Espermatogênese , Acrossomo/metabolismo , Animais , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen , Motilidade dos Espermatozoides , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides
6.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35616329

RESUMO

The perinuclear theca (PT) is a cytoskeletal element encapsulating the sperm nucleus; however, the physiological roles of the PT in sperm are largely uncertain. Here, we reveal that ACTRT1, ACTRT2, ACTL7A and ACTL9 proteins interact to form a multimeric complex and localize to the subacrosomal region of spermatids. Furthermore, we engineered Actrt1-knockout (KO) mice to define the functions of ACTRT1. Despite normal sperm count and motility, Actrt1-KO males were severely subfertile owing to a deficiency in fertilization. Loss of ACTRT1 caused a high incidence of malformed heads and detachment of acrosomes from sperm nuclei, caused by loosened acroplaxome structure during spermiogenesis. Furthermore, Actrt1-KO sperm showed reduced ACTL7A and PLCζ protein content as a potential cause of fertilization defects. Moreover, we reveal that ACTRT1 anchors developing acrosomes to the nucleus, likely by interacting with the inner acrosomal membrane protein SPACA1 and the nuclear envelope proteins PARP11 and SPATA46. Loss of ACTRT1 weakened the interaction between ACTL7A and SPACA1. Our study and recent findings of ACTL7A/ACTL9-deficient sperm together reveal that the sperm PT-specific ARP complex mediates the acrosome-nucleus connection.


Assuntos
Acrossomo , Infertilidade Masculina , Acrossomo/metabolismo , Animais , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo
7.
J Med Genet ; 61(6): 553-565, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38341271

RESUMO

BACKGROUND: The association between the TDRD6 variants and human infertility remains unclear, as only one homozygous missense variant of TDRD6 was found to be associated with oligoasthenoteratozoospermia (OAT). METHODS: Whole-exome sequencing and Sanger sequencing were employed to identify potential pathogenic variants of TDRD6 in infertile men. Histology, immunofluorescence, immunoblotting and ultrastructural analyses were conducted to clarify the structural and functional abnormalities of sperm in mutated patients. Tdrd6-knockout mice were generated using the CRISPR-Cas9 system. Total RNA-seq and single-cell RNA-seq (scRNA-seq) analyses were used to elucidate the underlying molecular mechanisms, followed by validation through quantitative RT-PCR and immunostaining. Intracytoplasmic sperm injection (ICSI) was also used to assess the efficacy of clinical treatment. RESULTS: Bi-allelic TDRD6 variants were identified in five unrelated Chinese individuals with OAT, including homozygous loss-of-function variants in two consanguineous families. Notably, besides reduced concentrations and impaired motility, a significant occurrence of acrosomal hypoplasia was detected in multiple spermatozoa among five patients. Using the Tdrd6-deficient mice, we further elucidate the pivotal role of TDRD6 in spermiogenesis and acrosome identified. In addition, the mislocalisation of crucial chromatoid body components DDX4 (MVH) and UPF1 was also observed in round spermatids from patients harbouring TDRD6 variants. ScRNA-seq analysis of germ cells from a patient with TDRD6 variants revealed that TDRD6 regulates mRNA metabolism processes involved in spermatid differentiation and cytoplasmic translation. CONCLUSION: Our findings strongly suggest that TDRD6 plays a conserved role in spermiogenesis and confirms the causal relationship between TDRD6 variants and human OAT. Additionally, this study highlights the unfavourable ICSI outcomes in individuals with bi-allelic TDRD6 variants, providing insights for potential clinical treatment strategies.


Assuntos
Alelos , Astenozoospermia , Sequenciamento do Exoma , Camundongos Knockout , Espermatogênese , Adulto , Animais , Humanos , Masculino , Camundongos , Acrossomo/patologia , Astenozoospermia/genética , Astenozoospermia/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Oligospermia/genética , Oligospermia/patologia , Linhagem , Injeções de Esperma Intracitoplásmicas , Espermatogênese/genética , Espermatozoides/patologia , Espermatozoides/metabolismo
8.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714330

RESUMO

The acrosome is a cap-shaped, Golgi-derived membranous organelle that is located over the anterior of the sperm nucleus and highly conserved throughout evolution. Although morphological changes during acrosome biogenesis in spermatogenesis have been well described, the molecular mechanism underlying this process is still largely unknown. Family with sequence similarity 71, member F1 and F2 (FAM71F1 and FAM71F2) are testis-enriched proteins that contain a RAB2B-binding domain, a small GTPase involved in vesicle transport and membrane trafficking. Here, by generating mutant mice for each gene, we found that Fam71f1 is essential for male fertility. In Fam71f1-mutant mice, the acrosome was abnormally expanded at the round spermatid stage, likely because of enhanced vesicle trafficking. Mass spectrometry analysis after immunoprecipitation indicated that, in testes, FAM71F1 binds not only RAB2B, but also RAB2A. Further study suggested that FAM71F1 binds to the GTP-bound active form of RAB2A/B, but not the inactive form. These results indicate that a complex of FAM71F1 and active RAB2A/B suppresses excessive vesicle trafficking during acrosome formation.


Assuntos
Acrossomo/metabolismo , Fertilidade/fisiologia , Proteínas Nucleares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rab2 de Ligação ao GTP/metabolismo , Acrossomo/patologia , Animais , Genética , Complexo de Golgi/metabolismo , Infertilidade Masculina , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Ligação Proteica , Cabeça do Espermatozoide/metabolismo , Espermatogênese , Teratozoospermia/metabolismo , Testículo/metabolismo
9.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125190

RESUMO

Loss-of-function mutations in multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes lead to decreased sperm motility and impaired male fertility. As an MMAF gene, the function of fibrous sheath-interacting protein 2 (FSIP2) remains largely unknown. In this work, we identified a homozygous truncating mutation of FSIP2 in an infertile patient. Accordingly, we constructed a knock-in (KI) mouse model with this mutation. In parallel, we established an Fsip2 overexpression (OE) mouse model. Remarkably, KI mice presented with the typical MMAF phenotype, whereas OE mice showed no gross anomaly except for sperm tails with increased length. Single-cell RNA sequencing of the testes uncovered altered expression of genes related to sperm flagellum, acrosomal vesicle and spermatid development. We confirmed the expression of Fsip2 at the acrosome and the physical interaction of this gene with Acrv1, an acrosomal marker. Proteomic analysis of the testes revealed changes in proteins sited at the fibrous sheath, mitochondrial sheath and acrosomal vesicle. We also pinpointed the crucial motifs of Fsip2 that are evolutionarily conserved in species with internal fertilization. Thus, this work reveals the dosage-dependent roles of Fsip2 in sperm tail and acrosome formation.


Assuntos
Acrossomo/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Plasma Seminal/metabolismo , Cauda do Espermatozoide/metabolismo , Animais , Fertilização , Homozigoto , Masculino , Proteínas de Membrana , Camundongos , Mutação , Fenótipo , Proteômica , Análise de Sequência de RNA , Motilidade dos Espermatozoides , Espermatogênese , Testículo
10.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34822718

RESUMO

Katanin microtubule-severing enzymes are crucial executers of microtubule regulation. Here, we have created an allelic loss-of-function series of the katanin regulatory B-subunit KATNB1 in mice. We reveal that KATNB1 is the master regulator of all katanin enzymatic A-subunits during mammalian spermatogenesis, wherein it is required to maintain katanin A-subunit abundance. Our data shows that complete loss of KATNB1 from germ cells is incompatible with sperm production, and we reveal multiple new spermatogenesis functions for KATNB1, including essential roles in male meiosis, acrosome formation, sperm tail assembly, regulation of both the Sertoli and germ cell cytoskeletons during sperm nuclear remodelling, and maintenance of seminiferous epithelium integrity. Collectively, our findings reveal that katanins are able to differentially regulate almost all key microtubule-based structures during mammalian male germ cell development, through the complexing of one master controller, KATNB1, with a 'toolbox' of neofunctionalised katanin A-subunits.


Assuntos
Haploidia , Katanina/genética , Meiose/genética , Espermatogênese/genética , Espermatozoides/crescimento & desenvolvimento , Acrossomo/metabolismo , Animais , Citoesqueleto/genética , Células Germinativas/citologia , Células Germinativas/crescimento & desenvolvimento , Masculino , Camundongos , Microtúbulos/genética , Células de Sertoli/citologia , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo
11.
Hum Reprod ; 39(5): 880-891, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38414365

RESUMO

STUDY QUESTION: Could actin-related protein T1 (ACTRT1) deficiency be a potential pathogenic factor of human male infertility? SUMMARY ANSWER: A 110-kb microdeletion of the X chromosome, only including the ACTRT1 gene, was identified as responsible for infertility in two Chinese males with sperm showing acrosomal ultrastructural defects and fertilization failure. WHAT IS KNOWN ALREADY: The actin-related proteins (e.g. ACTRT1, ACTRT2, ACTL7A, and ACTL9) interact with each other to form a multimeric complex in the subacrosomal region of spermatids, which is crucial for the acrosome-nucleus junction. Actrt1-knockout (KO) mice are severely subfertile owing to malformed sperm heads with detached acrosomes and partial fertilization failure. There are currently no reports on the association between ACTRT1 deletion and male infertility in humans. STUDY DESIGN, SIZE, DURATION: We recruited a cohort of 120 infertile males with sperm head deformations at a large tertiary hospital from August 2019 to August 2023. Genomic DNA extracted from the affected individuals underwent whole exome sequencing (WES), and in silico analyses were performed to identify genetic variants. Morphological analysis, functional assays, and ART were performed in 2022 and 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS: The ACTRT1 deficiency was identified by WES and confirmed by whole genome sequencing, PCR, and quantitative PCR. Genomic DNA of all family members was collected to define the hereditary mode. Papanicolaou staining and electronic microscopy were performed to reveal sperm morphological changes. Western blotting and immunostaining were performed to explore the pathological mechanism of ACTRT1 deficiency. ICSI combined with artificial oocyte activation (AOA) was applied for one proband. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a whole-gene deletion variant of ACTRT1 in two infertile males, which was inherited from their mothers, respectively. The probands exhibited sperm head deformations owing to acrosomal detachment, which is consistent with our previous observations on Actrt1-KO mice. Decreased expression and ectopic distribution of ACTL7A and phospholipase C zeta were observed in sperm samples from the probands. ICSI combined with AOA effectively solved the fertilization problem in Actrt1-KO mice and in one of the two probands. LIMITATIONS, REASONS FOR CAUTION: Additional cases are needed to further confirm the genetic contribution of ACTRT1 variants to male infertility. WIDER IMPLICATIONS OF THE FINDINGS: Our results reveal a gene-disease relation between the ACTRT1 deletion described here and human male infertility owing to acrosomal detachment and fertilization failure. This report also describes a good reproductive outcome of ART with ICSI-AOA for a proband. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Chongqing medical scientific research project (Joint project of Chongqing Health Commission and Science and Technology Bureau, 2023MSXM008 and 2023MSXM054). There are no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Acrossomo , Infertilidade Masculina , Proteínas dos Microfilamentos , Adulto , Humanos , Masculino , Acrossomo/patologia , Acrossomo/ultraestrutura , Actinas/metabolismo , Actinas/genética , Sequenciamento do Exoma , Fertilização/genética , Deleção de Genes , Infertilidade Masculina/genética , Cabeça do Espermatozoide/ultraestrutura , Cabeça do Espermatozoide/patologia , Injeções de Esperma Intracitoplásmicas , Espermatozoides/ultraestrutura , Espermatozoides/anormalidades , Proteínas dos Microfilamentos/genética
12.
BMC Vet Res ; 20(1): 257, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867200

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is nowadays a major emerging challenge for public health worldwide. The over- and misuse of antibiotics, including those for cell culture, are promoting AMR while also encouraging the research and employment of alternative drugs. The addition of antibiotics to the cell media is strongly recommended in sperm preservation, being gentamicin the most used for boar semen. Because of its continued use, several bacterial strains present in boar semen have developed resistance to this antibiotic. Antimicrobial peptides and proteins (AMPPs) are promising candidates as alternative antibiotics because their mechanism of action is less likely to promote AMR. In the present study, we tested two AMPPs (lysozyme and nisin; 50 and 500 µg/mL) as possible substitutes of gentamicin for boar semen preservation up to 48 h of storage. RESULTS: We found that both AMPPs improved sperm plasma membrane and acrosome integrity during semen storage. The highest concentration tested for lysozyme also kept the remaining sperm parameters unaltered, at 48 h of semen storage, and reduced the bacterial load at comparable levels of the samples supplemented with gentamicin (p > 0.05). On the other hand, while nisin (500 µg/mL) reduced the total Enterobacteriaceae counts, it also decreased the rapid and progressive sperm population and the seminal oxidation-reduction potential (p < 0.05). CONCLUSIONS: The protective effect of lysozyme on sperm function together with its antimicrobial activity and inborn presence in body fluids, including semen and cervical mucus, makes this enzyme a promising antimicrobial agent for boar semen preservation.


Assuntos
Antibacterianos , Muramidase , Nisina , Preservação do Sêmen , Animais , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Masculino , Antibacterianos/farmacologia , Suínos , Muramidase/farmacologia , Nisina/farmacologia , Sêmen/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Gentamicinas/farmacologia , Acrossomo/efeitos dos fármacos
13.
BMC Pregnancy Childbirth ; 24(1): 58, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212716

RESUMO

PURPOSE: Since the unexplained in vitro fertilization failure occurs frequently, it is of great importance and clinical value to identify potential underlying predictors. This study aimed to explore whether the percentage of sperm with a small acrosome was correlated with unexplained in vitro fertilization failure. METHODS: A new acrosomal function evaluation index (the percentage of sperm with a small acrosome) was introduced into the analysis of sperm morphology. The association between the index and acrosome function by acrosin activity detection test and acrosome reaction test was investigated. In addition, the correlation with unexplained in vitro fertilization failure was further explored. Finally, the ROC curve was used to analyze the diagnostic efficacy on the failure of in vitro fertilization and the cutoff value was calculated. RESULTS: As the increasing of the percentage of sperm with a small acrosome, the value of acrosin activity, acrosome reaction rate, and in vitro fertilization rate were reduced, with a statistically significant difference (P < 0.05). The index in the low fertilization rate group was significantly higher than that in the normal fertilization rate group (P < 0.05). Finally, the results of ROC curve found that when the index was 43.5%, the sensitivity and specificity were 74.2% and 95.3%, respectively. CONCLUSION: The percentage of sperm with a small acrosome was positively correlated with unexplained in vitro fertilization failure, which could be potentially used as a prognostic index for the failure of in vitro fertilization. TRIAL REGISTRATION: [Ethics review acceptance No IIT20210339B].


Assuntos
Acrosina , Acrossomo , Masculino , Humanos , Sêmen , Espermatozoides , Fertilização in vitro/métodos
14.
J Med Genet ; 60(3): 254-264, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35654582

RESUMO

BACKGROUND: Loss-of-function mutations in FSIP2 result in multiple morphological abnormalities of the flagella in humans and mice. Intriguingly, a recent study found that FSIP2 might regulate the expression of acrosomal proteins, indicating that Fsip2 might be involved in acrosome development in mice. However, whether FSIP2 also function in acrosome biogenesis in humans is largely unknown, and the underlying mechanism of which is unexplored. OBJECTIVE: Our objective was to reveal potential function of FSIP2 in regulating sperm acrosome formation. METHODS: We performed whole exome sequencing on four asthenoteratozoospermic patients. Western blot analysis and immunofluorescence staining were conducted to assess the protein expression of FSIP2. Proteomics approach, liquid chromatography-tandem mass spectrometry and co-immunoprecipitation were implemented to clarify the molecules in acrosome biogenesis regulated by FSIP2. RESULTS: Biallelic FSIP2 variants were identified in four asthenoteratozoospermic individuals. The protein expression of MUT-FSIP2 was sharply decreased or absent in vitro or in vivo. Interestingly, aside from the sperm flagellar defects, the acrosomal hypoplasia was detected in numerous sperm from the four patients. FSIP2 co-localised with peanut agglutinin in the acrosome during spermatogenesis. Moreover, FSIP2 interacted with proteins (DPY19L2, SPACA1, HSP90B1, KIAA1210, HSPA2 and CLTC) involved in acrosome biogenesis. In addition, spermatozoa from patients carrying FSIP2 mutations showed downregulated expression of DPY19L2, ZPBP, SPACA1, CCDC62, CCIN, SPINK2 and CSNK2A2. CONCLUSION: Our findings unveil that FSIP2 might involve in sperm acrosome development, and consequently, its mutations might contribute to globozoospermia or acrosomal aplasia. We meanwhile first uncover the potential molecular mechanism of FSIP2 regulating acrosome biogenesis.


Assuntos
Acrossomo , Infertilidade Masculina , Humanos , Masculino , Camundongos , Animais , Sêmen/metabolismo , Espermatozoides/metabolismo , Espermatogênese/genética , Infertilidade Masculina/genética , Proteínas de Membrana/metabolismo
15.
Mol Cell Proteomics ; 21(4): 100214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183770

RESUMO

Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm-egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility.


Assuntos
Reação Acrossômica , Espermatozoides , Acrossomo/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Proteômica , Capacitação Espermática , Espermatozoides/metabolismo
16.
Med Sci Monit ; 30: e942946, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698627

RESUMO

BACKGROUND Cryopreservation preserves male fertility, crucial in oncology, advanced age, and infertility. However, it damages sperm motility, membrane, and DNA. Zinc (Zn), an antioxidant, shows promise in improving sperm quality after thawing, highlighting its potential as a cryoprotectant in reproductive medicine. MATERIAL AND METHODS Gradient concentration of ZnSO4 (0, 12.5, 25, 50, and 100 µM) was added in the Glycerol-egg yolk-citrate (GEYC) cryopreservative medium as an extender. Alterations in sperm viability and motility parameters after cryopreservation were detected in each group. Sperm plasma membrane integrity (PMI), acrosome integrity (ACR), DNA fragment index (DFI), and changes in sperm mitochondrial function were examined, including: mitochondrial potential (MMP), sperm reactive oxygen species (ROS), and sperm ATP. RESULTS We found that 50 µM ZnSO4 was the most effective for the curvilinear velocity (VCL) and the average path velocity (VAP) of sperm after cryo-resuscitation. Compared to the Zn-free group, sperm plasma membrane integrity (PMI) was increased, DNA fragmentation index (DFI) was decreased, reactive oxygen species (ROS) was reduced, and mitochondrial membrane potential (MMP) was increased after cryorevival in the presence of 50 µM ZnSO4. CONCLUSIONS Zn ion is one of the antioxidants in the cell. The results of our current clinical study are sufficient to demonstrate that Zn can improve preserves sperm quality during cryopreservation when added to GEYC. The addition of 50 µM ZnSO4 increased curve velocity, mean path velocity, sperm survival (or plasma membrane integrity), and mitochondrial membrane potential while reducing ROS production and DNA breaks compared to GEYC thawed without ZnSO4.


Assuntos
Criopreservação , Crioprotetores , Fragmentação do DNA , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Zinco , Masculino , Criopreservação/métodos , Humanos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Crioprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Preservação do Sêmen/métodos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Zinco/farmacologia , Zinco/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Análise do Sêmen , Sobrevivência Celular/efeitos dos fármacos , Adulto , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Acrossomo/efeitos dos fármacos , Acrossomo/metabolismo , Congelamento
17.
Cryobiology ; 115: 104892, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593909

RESUMO

Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.


Assuntos
Apoptose , Criopreservação , Fertilização in vitro , Congelamento , Estresse Oxidativo , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Bovinos , Criopreservação/veterinária , Criopreservação/métodos , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides/fisiologia , Fertilização in vitro/veterinária , Congelamento/efeitos adversos , Membrana Celular , Sobrevivência Celular , Acrossomo
18.
Cryobiology ; 115: 104897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636593

RESUMO

Semen freezing and storing has been widely used in reproductive biotechnology, being applied to certain males of livestock breeds or animal species with economic value such as the Angora goat. The development of a semen extender with the cryoprotective agents can prevent the deterioration of sperm parameters after thawing. This study aimed to investigate lipid mixtures (from a liposome kit, Lps) and melatonin (Mel) at different doses to prevent the deterioration of sperm parameters and to provide the cryoprotective effects on sperm DNA. The Angora goat ejaculates were collected and pooled. They were divided into seven equal volumes, and each of them was diluted with the extenders of the experimental groups with additives (Lps 321.99 µg/mL, Lps 841.33 µg/mL, Mel 0.25 mM, Mel 1 mM, Lps 321.99 µg/mL + Mel 1 mM, Lps 841.33 µg/mL + Mel 0.25 mM) and no additives (control group). After the freeze-thawing process, motility, viability, acrosome integrity, DNA double-strand breaks, and abnormal DNA integrity were assessed for different extender groups. It was determined that the use of Lps alone at low dose or the combination of Lps and Mel had significant cryoprotective effects on motility, viability, acrosome integrity, and DNA damage in Angora goat sperm. This study will help us to understand the effects of Lps and Mel used alone or in combination at different doses and which doses give the optimum spermatological parameter rates following the freeze-thawing process, and hence it will shed light on further studies.


Assuntos
Criopreservação , Crioprotetores , Cabras , Lipossomos , Melatonina , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Melatonina/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Criopreservação/métodos , Criopreservação/veterinária , Motilidade dos Espermatozoides/efeitos dos fármacos , Crioprotetores/farmacologia , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Dano ao DNA/efeitos dos fármacos , Acrossomo/efeitos dos fármacos , Acrossomo/metabolismo , Lipídeos/química , Sobrevivência Celular/efeitos dos fármacos
19.
Biol Res ; 57(1): 44, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965573

RESUMO

BACKGROUND: Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 µg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS: Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS: Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.


Assuntos
Reação Acrossômica , Acrossomo , Cálcio , Chumbo , Motilidade dos Espermatozoides , Espermatozoides , Masculino , Espermatozoides/efeitos dos fármacos , Cálcio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Animais , Acrossomo/efeitos dos fármacos , Chumbo/toxicidade , Reação Acrossômica/efeitos dos fármacos , AMP Cíclico/metabolismo , Bovinos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Análise do Sêmen , Dano ao DNA/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Compostos Organometálicos/farmacologia
20.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34556579

RESUMO

Fertilization is the fundamental process that initiates the development of a new individual in all sexually reproducing species. Despite its importance, our understanding of the molecular players that govern mammalian sperm-egg interaction is incomplete, partly because many of the essential factors found in nonmammalian species do not have obvious mammalian homologs. We have recently identified the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) protein Bouncer as an essential fertilization factor in zebrafish [S. Herberg, K. R. Gert, A. Schleiffer, A. Pauli, Science 361, 1029-1033 (2018)]. Here, we show that Bouncer's homolog in mammals, Sperm Acrosome Associated 4 (SPACA4), is also required for efficient fertilization in mice. In contrast to fish, in which Bouncer is expressed specifically in the egg, SPACA4 is expressed exclusively in the sperm. Male knockout mice are severely subfertile, and sperm lacking SPACA4 fail to fertilize wild-type eggs in vitro. Interestingly, removal of the zona pellucida rescues the fertilization defect of Spaca4-deficient sperm in vitro, indicating that SPACA4 is not required for the interaction of sperm and the oolemma but rather of sperm and the zona pellucida. Our work identifies SPACA4 as an important sperm protein necessary for zona pellucida penetration during mammalian fertilization.


Assuntos
Antígenos Ly/metabolismo , Fertilização , Infertilidade Masculina/patologia , Glicoproteínas de Membrana/fisiologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Interações Espermatozoide-Óvulo , Acrossomo/metabolismo , Acrossomo/patologia , Animais , Antígenos Ly/genética , Feminino , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Zona Pelúcida/metabolismo , Zona Pelúcida/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA