Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 66(5): 897-908, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506424

RESUMO

The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Raios Ultravioleta , Arabidopsis/efeitos da radiação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Lipoxigenase/metabolismo , Lipoxigenase/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Adaptação Fisiológica/genética , Núcleo Celular/metabolismo , Lipoxigenases
2.
Bull Exp Biol Med ; 176(5): 548-554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38717568

RESUMO

We studied the molecular mechanisms of cross-adaptation to ionizing radiation (1 Gy) of lymphocytes isolated from rats subjected to emotional stress. The effects of chronic (CES; various types of stress exposure) and acute (AES; forced swimming) emotional stress in rats on indicators of oxidative stress, cell death, and levels of NRF2 and NOX4 proteins involved in the development of the adaptive response were analyzed in isolated lymphocytes. It was found that stress induced an adaptive response in rat lymphocytes and triggered processes similar to the adaptive response induced by low doses of ionizing radiation: an increase in the level of oxidized DNA and cell death, as well as an increase in the content of NOX4 and NRF2 proteins. In animals subjected to emotional stress, suppressed DNA oxidation in response to irradiation, reduced levels of protective factor NRF2, as well as lymphocyte death were observed.


Assuntos
Linfócitos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Radiação Ionizante , Estresse Psicológico , Animais , Linfócitos/efeitos da radiação , Linfócitos/metabolismo , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Psicológico/metabolismo , Masculino , Estresse Oxidativo/efeitos da radiação , Ratos Wistar , Adaptação Fisiológica/efeitos da radiação , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Dano ao DNA/efeitos da radiação
3.
Sci Rep ; 14(1): 18534, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122766

RESUMO

In this paper, we demonstrated the biological effects of acute low-dose neutrons on the whole body of rats and investigated the impact of that level of neutron dose to induce an in vivo radio-adaptive response. To understand the radio-adaptive response, the examined animals were exposed to acute neutron radiation doses of 5 and 10 mSv, followed by a 50 mSv challenge dose after 14 days. After irradiation, all groups receiving single and double doses were kept in cages for one day before sampling. The electron paramagnetic resonance (EPR) method was used to estimate the radiation-induced radicals in the blood, and some hematological parameters and lipid peroxidation (MDA) were determined. A comet assay was performed beside some of the antioxidant enzymes [catalase enzyme (CAT), superoxide dismutase (SOD), and glutathione (GSH)]. Seven groups of adult male rats were classified according to their dose of neutron exposure. Measurements of all studied markers are taken one week after harvesting, except for hematological markers, within 2 h. The results indicated lower production of antioxidant enzymes (CAT by 1.18-5.83%, SOD by 1.47-17.8%, and GSH by 11.3-82.1%). Additionally, there was an increase in red cell distribution width (RDW) (from 4.61 to 25.19%) and in comet assay parameters such as Tail Length, (from 6.16 to 10.81 µm), Tail Moment, (from 1.17 to 2.46 µm), and percentage of DNA in tail length (DNA%) (from 9.58 to 17.32%) in all groups exposed to acute doses of radiation ranging from 5 to 50 mSv, respectively. This emphasizes the ascending harmful effect with the increased acute thermal neutron doses. The values of the introduced factor of radio adaptive response for all markers under study reveal that the lower priming dose promotes a higher adaptation response and vice versa. Ultimately, the results indicate significant variations in DNA%, SOD enzyme levels, EPR intensity, total Hb concentration, and RDWs, suggesting their potential use as biomarkers for acute thermal neutron dosimetry. Further research is necessary to validate these measurements as biodosimetry for radiation exposure, including investigations involving the response impact of RAR with varied challenge doses and post-irradiation behavior.


Assuntos
Biomarcadores , Nêutrons , Animais , Ratos , Masculino , Biomarcadores/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos/efeitos da radiação , Radiometria/métodos , Relação Dose-Resposta à Radiação , Dano ao DNA/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Catalase/metabolismo , Glutationa/metabolismo , Glutationa/sangue , Ensaio Cometa , Estresse Oxidativo/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica/métodos
4.
Plant Biol (Stuttg) ; 26(4): 521-531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38568875

RESUMO

Plants face a wide range of biotic and abiotic stress conditions, which are further intensified by climate change. Among these stressors, increased irradiation in terms of intensity and wavelength range can lead to detrimental effects, such as chlorophyll degradation, destruction of the PSII reaction center, generation of ROS, alterations to plant metabolism, and even plant death. Here, we investigated the responses of two citrus genotypes, Citrus macrophylla (CM), and Troyer citrange (TC) to UV-B light-induced stress, by growing plants of both genotypes under control and UV-B stress conditions for 5 days to evaluate their tolerance mechanisms. TC seedlings had higher sensitivity to UV-B light than CM seedlings, as they showed more damage and increased levels of oxidative harm (indicated by the accumulation of MDA). In contrast, CM seedlings exhibited specific adaptive mechanisms, including accumulation of higher levels of proline under stressful conditions, and enhanced antioxidant capacity, as evidenced by increased ascorbate peroxidase activity and upregulation of the CsAPX2 gene. Phytohormone accumulation patterns were similar in both genotypes, with a decrease in ABA content in response to UV-B light. Furthermore, expression of genes involved in light perception and response was specifically affected in the tolerant CM seedlings, which exhibited higher expression of CsHYH/CsHY5 and CsRUP1-2 genes. These findings underscore the importance of the antioxidant system in citrus plants subjected to UV-B light-induced stress and suggest that CsHYH/CsHY5 and CsRUP1-2 could be considered genes associated with tolerance to such challenging conditions.


Assuntos
Antioxidantes , Citrus , Prolina , Plântula , Raios Ultravioleta , Citrus/efeitos da radiação , Citrus/genética , Citrus/fisiologia , Citrus/metabolismo , Prolina/metabolismo , Antioxidantes/metabolismo , Plântula/efeitos da radiação , Plântula/fisiologia , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genótipo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Oxidativo/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Adaptação Fisiológica/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA