Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Extremophiles ; 26(3): 34, 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36372831

RESUMO

Virus capsid proteins have various applications in diverse fields such as biotechnology, electronics, and medicine. In this study, the major capsid protein of bacilliform clavavitus APBV1, which infects the hyperthermophilic archaeon Aeropyrum pernix, was successfully expressed in Escherichia coli. The gene product was expressed as a histidine-tagged protein in E. coli and purified to homogeneity using single-step nickel affinity chromatography. The purified recombinant protein self-assembled to form bacilliform virus-like particles at room temperature. The particles exhibited tolerance against high concentrations of organic solvents and protein denaturants. In addition, we succeeded in fabricating functional nanoparticles with amine functional groups on the surface of ORF6-81 nanoparticles. These robust protein nanoparticles can potentially be used as a scaffold in nanotechnological applications.


Assuntos
Aeropyrum , Nanoestruturas , Aeropyrum/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Archaea/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(40): 10034-10039, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224495

RESUMO

The modified mevalonate pathway is believed to be the upstream biosynthetic route for isoprenoids in general archaea. The partially identified pathway has been proposed to explain a mystery surrounding the lack of phosphomevalonate kinase and diphosphomevalonate decarboxylase by the discovery of a conserved enzyme, isopentenyl phosphate kinase. Phosphomevalonate decarboxylase was considered to be the missing link that would fill the vacancy in the pathway between mevalonate 5-phosphate and isopentenyl phosphate. This enzyme was recently discovered from haloarchaea and certain Chroloflexi bacteria, but their enzymes are close homologs of diphosphomevalonate decarboxylase, which are absent in most archaea. In this study, we used comparative genomic analysis to find two enzymes from a hyperthermophilic archaeon, Aeropyrum pernix, that can replace phosphomevalonate decarboxylase. One enzyme, which has been annotated as putative aconitase, catalyzes the dehydration of mevalonate 5-phosphate to form a previously unknown intermediate, trans-anhydromevalonate 5-phosphate. Then, another enzyme belonging to the UbiD-decarboxylase family, which likely requires a UbiX-like partner, converts the intermediate into isopentenyl phosphate. Their activities were confirmed by in vitro assay with recombinant enzymes and were also detected in cell-free extract from A. pernix These data distinguish the modified mevalonate pathway of A. pernix and likely, of the majority of archaea from all known mevalonate pathways, such as the eukaryote-type classical pathway, the haloarchaea-type modified pathway, and another modified pathway recently discovered from Thermoplasma acidophilum.


Assuntos
Aconitato Hidratase , Aeropyrum , Proteínas Arqueais , Carboxiliases , Ácido Mevalônico/metabolismo , Terpenos/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Aeropyrum/genética , Aeropyrum/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo
3.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32561587

RESUMO

Pernisine is a subtilisin-like protease that was originally identified in the hyperthermophilic archaeon Aeropyrum pernix, which lives in extreme marine environments. Pernisine shows exceptional stability and activity due to the high-temperature conditions experienced by A. pernix Pernisine is of interest for industrial purposes, as it is one of the few proteases that has demonstrated prion-degrading activity. Like other extracellular subtilisins, pernisine is synthesized in its inactive pro-form (pro-pernisine), which needs to undergo maturation to become proteolytically active. The maturation processes of mesophilic subtilisins have been investigated in detail; however, less is known about the maturation of their thermophilic homologs, such as pernisine. Here, we show that the structure of pro-pernisine is disordered in the absence of Ca2+ ions. In contrast to the mesophilic subtilisins, pro-pernisine requires Ca2+ ions to adopt the conformation suitable for its subsequent maturation. In addition to several Ca2+-binding sites that have been conserved from the thermostable Tk-subtilisin, pernisine has an additional insertion sequence with a Ca2+-binding motif. We demonstrate the importance of this insertion for efficient folding and stabilization of pernisine during its maturation. Moreover, analysis of the pernisine propeptide explains the high-temperature requirement for pro-pernisine maturation. Of note, the propeptide inhibits the pernisine catalytic domain more potently at high temperatures. After dissociation, the propeptide is destabilized at high temperatures only, which leads to its degradation and finally to pernisine activation. Our data provide new insights into and understanding of the thermostable subtilisin autoactivation mechanism.IMPORTANCE Enzymes from thermophilic organisms are of particular importance for use in industrial applications, due to their exceptional stability and activity. Pernisine, from the hyperthermophilic archaeon Aeropyrum pernix, is a proteolytic enzyme that can degrade infective prion proteins and thus has a potential use for disinfection of prion-contaminated surfaces. Like other subtilisin-like proteases, pernisine needs to mature through an autocatalytic process to become an active protease. In the present study, we address the maturation of pernisine and show that the process is regulated specifically at high temperatures by the propeptide. Furthermore, we demonstrate the importance of a unique Ca2+-binding insertion for stabilization of mature pernisine. Our results provide a novel understanding of thermostable subtilisin autoactivation, which might advance the development of these enzymes for commercial use.


Assuntos
Aeropyrum/genética , Proteínas Arqueais/genética , Peptídeo Hidrolases/genética , Aeropyrum/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Sítios de Ligação , Conformação Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo
4.
Nucleic Acids Res ; 46(18): 9617-9624, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30202863

RESUMO

RNA 2'-phosphotransferase Tpt1 converts an internal RNA 2'-monophosphate to a 2'-OH via a two-step NAD+-dependent mechanism in which: (i) the 2'-phosphate attacks the C1″ of NAD+ to expel nicotinamide and form a 2'-phospho-ADP-ribosylated RNA intermediate; and (ii) the ADP-ribose O2″ attacks the phosphate of the RNA 2'-phospho-ADPR intermediate to expel the RNA 2'-OH and generate ADP-ribose 1″-2″ cyclic phosphate. Tpt1 is an essential component of the fungal tRNA splicing pathway that generates a unique 2'-PO4, 3'-5' phosphodiester splice junction during tRNA ligation. The wide distribution of Tpt1 enzymes in taxa that have no fungal-type RNA ligase raises the prospect that Tpt1 might catalyze reactions other than RNA 2'-phosphate removal. A survey of Tpt1 enzymes from diverse sources reveals that whereas all of the Tpt1 enzymes are capable of NAD+-dependent conversion of an internal RNA 2'-PO4 to a 2'-OH (the canonical Tpt1 reaction), a subset of Tpt1 enzymes also catalyzed NAD+-dependent ADP-ribosylation of an RNA or DNA 5'-monophosphate terminus. Aeropyrum pernix Tpt1 (ApeTpt1) is particularly adept in this respect. One-step synthesis of a 5'-phospho-ADP-ribosylated cap structure by ApeTpt1 (with no subsequent 5'-phosphotransferase step) extends the repertoire of the Tpt1 enzyme family and the catalogue of ADP-ribosylation reactions involving nucleic acid acceptors.


Assuntos
Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Capuzes de RNA/genética , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aeropyrum/enzimologia , Aeropyrum/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Teste de Complementação Genética , NAD/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/metabolismo , Splicing de RNA , RNA Fúngico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Biochim Biophys Acta ; 1857(2): 160-168, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26592143

RESUMO

Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O.


Assuntos
Aeropyrum/química , Bacillus subtilis/química , Proteínas de Bactérias/química , Cisteína/química , Grupo dos Citocromos b/química , Heme/análogos & derivados , Proteínas de Membrana/química , Aeropyrum/enzimologia , Aeropyrum/genética , Aeropyrum/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Expressão Gênica , Heme/biossíntese , Heme/química , Heme/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Oxigênio/química , Oxigênio/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Microbiology (Reading) ; 163(12): 1864-1879, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29139344

RESUMO

Disulfide bonds confer stability and activity to proteins. Bioinformatic approaches allow predictions of which organisms make protein disulfide bonds and in which subcellular compartments disulfide bond formation takes place. Such an analysis, along with biochemical and protein structural data, suggests that many of the extremophile Crenarachaea make protein disulfide bonds in both the cytoplasm and the cell envelope. We have sought to determine the oxidative folding pathways in the sequenced genomes of the Crenarchaea, by seeking homologues of the enzymes known to be involved in disulfide bond formation in bacteria. Some Crenarchaea have two homologues of the cytoplasmic membrane protein VKOR, a protein required in many bacteria for the oxidation of bacterial DsbAs. We show that the two VKORs of Aeropyrum pernix assume opposite orientations in the cytoplasmic membrane, when expressed in E. coli. One has its active cysteines oriented toward the E. coli periplasm (ApVKORo) and the other toward the cytoplasm (ApVKORi). Furthermore, the ApVKORo promotes disulfide bond formation in the E. coli cell envelope, while the ApVKORi promotes disulfide bond formation in the E. coli cytoplasm via a co-expressed archaeal protein ApPDO. Amongst the VKORs from different archaeal species, the pairs of VKORs in each species are much more closely related to each other than to the VKORs of the other species. The results suggest two independent occurrences of the evolution of the two topologically inverted VKORs in archaea. Our results suggest a mechanistic basis for the formation of disulfide bonds in the cytoplasm of Crenarchaea.


Assuntos
Aeropyrum/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Dissulfetos/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Aeropyrum/química , Aeropyrum/genética , Proteínas Arqueais/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cisteína/química , Cisteína/metabolismo , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/genética , Periplasma/genética , Periplasma/metabolismo , Dobramento de Proteína
7.
Proteins ; 84(5): 712-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26868175

RESUMO

Initiation factor 5B (IF5B) is a universally conserved translational GTPase that catalyzes ribosomal subunit joining. In eukaryotes, IF5B directly interacts via a groove in its domain IV with initiation factor 1A (IF1A), another universally conserved initiation factor, to accomplish efficient subunit joining. Here, we have determined the first structure of a crenarchaeal IF5B, which revealed that the archaea-specific region of IF5B (helix α15) binds and occludes the groove of domain IV. Therefore, archaeal IF5B cannot access IF1A in the same manner as eukaryotic IF5B. This fact suggests that different relationships between IF5B and IF1A exist in archaea and eukaryotes.


Assuntos
Aeropyrum/genética , Proteínas Arqueais/ultraestrutura , Fatores de Iniciação em Eucariotos/ultraestrutura , Aeropyrum/química , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Modelos Moleculares , Conformação Proteica
8.
Extremophiles ; 20(5): 733-45, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27377295

RESUMO

O-Phosphoserine sulfhydrylase (OPSS) synthesizes cysteine from O-phospho-L-serine (OPS) and sulfide. We have determined the three-dimensional structures of OPSS from hyperthermophilic archaeon Aeropyrum pernix K1 (ApOPSS) in complex with aminoacrylate intermediate (AA) formed from pyridoxal 5'-phosphate with OPS or in complex with cysteine and compared them with that of ApOPSS. We found an orientational change of F225 at the active-site entrance and constructed an F225A mutant to examine its activities and AA stability and clarify the role of F225 in ApOPSS. The OPS and O-acetyl-L-serine (OAS) sulfhydrylase activities of the F225A mutant decreased by 4.2- and 15-fold compared to those of the wild-type (wt) ApOPSS, respectively. The ability of OPS and OAS to form AA also decreased by 12- and 27-fold, respectively. AA was less stable in the F225A mutant than in the wt ApOPSS. Simulated docking showed that leaving groups, such as phosphate and acetate, were oriented to the inside of the active site in the F225A mutant, whereas they were oriented to the entrance in the wt ApOPSS. These results suggest that F225 in ApOPSS plays important roles in maintaining the hydrophobic environment of AA from solvent water and in controlling the orientation of leaving groups.


Assuntos
Aeropyrum/enzimologia , Carbono-Oxigênio Liases/química , Simulação de Acoplamento Molecular , Aeropyrum/genética , Substituição de Aminoácidos , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/metabolismo , Domínio Catalítico
9.
Syst Appl Microbiol ; 47(2-3): 126507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703419

RESUMO

Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.


Assuntos
Fontes Hidrotermais , Metagenoma , Filogenia , RNA Ribossômico 16S , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Genoma Bacteriano/genética , Archaea/genética , Archaea/classificação , DNA Bacteriano/genética , Aeropyrum/genética , Aeropyrum/classificação , Genômica , DNA Arqueal/genética , Bactérias/genética , Bactérias/classificação , Genoma Arqueal
10.
J Biol Chem ; 287(13): 10394-10402, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22334696

RESUMO

All thermophilic and hyperthermophilic archaea encode homologs of dimeric Alba (Sac10b) proteins that bind cooperatively at high density to DNA. Here, we report the 2.0 Å resolution crystal structure of an Alba2 (Ape10b2)-dsDNA complex from Aeropyrum pernix K1. A rectangular tube-like structure encompassing duplex DNA reveals the positively charged residues in the monomer-monomer interface of each dimer packing on either side of the bound dsDNA in successive minor grooves. The extended hairpin loop connecting strands ß3 and ß4 undergoes significant conformational changes upon DNA binding to accommodate the other Alba2 dimer during oligomerization. Mutational analysis of key interacting residues confirmed the specificity of Alba2-dsDNA interactions.


Assuntos
Aeropyrum/química , Proteínas Arqueais/química , DNA Arqueal/química , Proteínas de Ligação a DNA/química , Aeropyrum/genética , Aeropyrum/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , DNA Arqueal/genética , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
Biochem Biophys Res Commun ; 436(2): 230-4, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23726912

RESUMO

Cis-prenyltransferase from a hyperthermophilic archaeon Aeropyrum pernix was expressed in Escherichia coli and purified for characterization. Properties such as substrate specificity, product chain-length, thermal stability and cofactor requirement were investigated using the recombinant enzyme. In particular, the substrate specificity of the enzyme attracts interest because only dimethylallyl diphosphate and geranylfarnesyl diphosphate, both of which are unusual substrates for known cis-prenyltransferases, are likely available as an allylic primer substrate in A. pernix. From the enzymatic study, the archaeal enzyme was shown to be undecaprenyl diphosphate synthase that has anomalous substrate specificity, which results in a preference for geranylfarnesyl diphosphate. This means that the product of the enzyme, which is probably used as the precursor of the glycosyl carrier lipid, would have an undiscovered structure.


Assuntos
Aeropyrum/enzimologia , Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Temperatura Alta , Aeropyrum/genética , Alquil e Aril Transferases/genética , Proteínas Arqueais/genética , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Escherichia coli/genética , Gefarnato/análogos & derivados , Gefarnato/metabolismo , Organofosfatos/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
12.
Appl Environ Microbiol ; 79(19): 5891-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872576

RESUMO

The increasing number of genome sequences of archaea and bacteria show their adaptation to different environmental conditions at the genomic level. Aeropyrum spp. are aerobic and hyperthermophilic archaea. Aeropyrum camini was isolated from a deep-sea hydrothermal vent, and Aeropyrum pernix was isolated from a coastal solfataric vent. To investigate the adaptation strategy in each habitat, we compared the genomes of the two species. Shared genome features were a small genome size, a high GC content, and a large portion of orthologous genes (86 to 88%). The genomes also showed high synteny. These shared features may have been derived from the small number of mobile genetic elements and the lack of a RecBCD system, a recombinational enzyme complex. In addition, the specialized physiology (aerobic and hyperthermophilic) of Aeropyrum spp. may also contribute to the entire-genome similarity. Despite having stable genomes, interference of synteny occurred with two proviruses, A. pernix spindle-shaped virus 1 (APSV1) and A. pernix ovoid virus 1 (APOV1), and clustered regularly interspaced short palindromic repeat (CRISPR) elements. Spacer sequences derived from the A. camini CRISPR showed significant matches with protospacers of the two proviruses infecting A. pernix, indicating that A. camini interacted with viruses closely related to APSV1 and APOV1. Furthermore, a significant fraction of the nonorthologous genes (41 to 45%) were proviral genes or ORFans probably originating from viruses. Although the genomes of A. camini and A. pernix were conserved, we observed nonsynteny that was attributed primarily to virus-related elements. Our findings indicated that the genomic diversification of Aeropyrum spp. is substantially caused by viruses.


Assuntos
Aeropyrum/genética , Aeropyrum/virologia , Variação Genética , Genoma Arqueal , Provírus/genética , Aeropyrum/isolamento & purificação , Composição de Bases , DNA Arqueal/química , DNA Arqueal/genética , Fontes Hidrotermais/microbiologia , Dados de Sequência Molecular , Água do Mar/microbiologia , Análise de Sequência de DNA , Sintenia
13.
Artigo em Inglês | MEDLINE | ID: mdl-23989144

RESUMO

Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed.


Assuntos
Aeropyrum/química , Proteínas Arqueais/química , Íons/química , RNA Arqueal/química , Proteínas Ribossômicas/química , Aeropyrum/genética , Aeropyrum/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Arqueais/genética , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Temperatura Alta , Humanos , Ligação de Hidrogênio , Methanocaldococcus/química , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , RNA Arqueal/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Homologia Estrutural de Proteína
14.
Nucleic Acids Res ; 39(21): 9376-89, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21846775

RESUMO

In Crenarchaea, several tRNA genes are predicted to express precursor-tRNAs (pre-tRNAs) with canonical or non-canonical introns at various positions. We initially focused on the tRNA(Thr) species of hyperthermophilic crenarchaeon, Aeropyrum pernix (APE) and found that in the living APE cells three tRNA(Thr) species were transcribed and subsequently matured to functional tRNAs. During maturation, introns in two of them were cleaved from standard and non-standard positions. Biochemical studies revealed that the APE splicing endonuclease (APE-EndA) removed both types of introns, including the non-canonical introns, without any nucleotide modification. To clarify the underlying reasons for broad substrate specificity of APE-EndA, we determined the crystal structure of wild-type APE-EndA and subsequently compared its structure with that of Archaeaoglobus fulgidus (AFU)-EndA, which has narrow substrate specificity. Remarkably, structural comparison revealed that APE-EndA possesses a Crenarchaea specific loop (CSL). Introduction of CSL into AFU-EndA enhanced its intron-cleaving activity irrespective of the position or motif of the intron. Thus, our biochemical and crystallographic analyses of the chimera-EndA demonstrated that the CSL is responsible for the broad substrate specificity of APE-EndA. Furthermore, mutagenesis studies revealed that Lys44 in CSL functions as the RNA recognition site.


Assuntos
Aeropyrum/enzimologia , Proteínas Arqueais/química , Endorribonucleases/química , Precursores de RNA/metabolismo , Splicing de RNA , RNA de Transferência de Treonina/metabolismo , Aeropyrum/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Endorribonucleases/genética , Endorribonucleases/metabolismo , Genoma Arqueal , Íntrons , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Engenharia de Proteínas , Precursores de RNA/química , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/genética , Especificidade por Substrato
15.
Nat Commun ; 14(1): 666, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750723

RESUMO

Conjugation is a major mechanism of horizontal gene transfer promoting the spread of antibiotic resistance among human pathogens. It involves establishing a junction between a donor and a recipient cell via an extracellular appendage known as the mating pilus. In bacteria, the conjugation machinery is encoded by plasmids or transposons and typically mediates the transfer of cognate mobile genetic elements. Much less is known about conjugation in archaea. Here, we determine atomic structures by cryo-electron microscopy of three conjugative pili, two from hyperthermophilic archaea (Aeropyrum pernix and Pyrobaculum calidifontis) and one encoded by the Ti plasmid of the bacterium Agrobacterium tumefaciens, and show that the archaeal pili are homologous to bacterial mating pili. However, the archaeal conjugation machinery, known as Ced, has been 'domesticated', that is, the genes for the conjugation machinery are encoded on the chromosome rather than on mobile genetic elements, and mediates the transfer of cellular DNA.


Assuntos
Aeropyrum , Agrobacterium tumefaciens , Conjugação Genética , DNA Arqueal , Pyrobaculum , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , DNA Arqueal/genética , DNA Bacteriano/genética , Transferência Genética Horizontal , Plasmídeos , Aeropyrum/genética , Pyrobaculum/genética
16.
J Biol Chem ; 286(3): 1987-98, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21084296

RESUMO

Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism.


Assuntos
Aeropyrum/enzimologia , Proteínas Arqueais/química , Peptídeo Hidrolases/química , Aeropyrum/genética , Substituição de Aminoácidos , Proteínas Arqueais/genética , Catálise , Cristalografia por Raios X , Mutação de Sentido Incorreto , Peptídeo Hidrolases/genética , Estrutura Terciária de Proteína
17.
J Biol Chem ; 286(28): 24828-41, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592970

RESUMO

KvAP is a voltage-gated tetrameric K(+) channel with six transmembrane (S1-S6) segments in each monomer from the archaeon Aeropyrum pernix. The objective of the present investigation was to understand the plausible role of the S6 segment, which has been proposed to form the inner lining of the pore, in the membrane assembly and functional properties of KvAP channel. For this purpose, a 22-residue peptide, corresponding to the S6 transmembrane segment of KvAP (amino acids 218-239), and a scrambled peptide (S6-SCR) with rearrangement of only hydrophobic amino acids but without changing its composition were synthesized and characterized structurally and functionally. Although both peptides bound to the negatively charged phosphatidylcholine/phosphatidylglycerol model membrane with comparable affinity, significant differences were observed between these peptides in their localization, self-assembly, and aggregation properties onto this membrane. S6-SCR also exhibited reduced helical structures in SDS micelles and phosphatidylcholine/phosphatidylglycerol lipid vesicles as compared with the S6 peptide. Furthermore, the S6 peptide showed significant membrane-permeabilizing capability as evidenced by the release of calcein from the calcein-entrapped lipid vesicles, whereas S6-SCR showed much weaker efficacy. Interestingly, although the S6 peptide showed ion channel activity in the bilayer lipid membrane, despite having the same amino acid composition, S6-SCR was significantly inactive. The results demonstrated sequence-specific structural and functional properties of the S6 wild type peptide. The selected S6 segment is probably an important structural element that could play an important role in the membrane interaction, membrane assembly, and functional property of the KvAP channel.


Assuntos
Aeropyrum/química , Proteínas Arqueais/química , Permeabilidade da Membrana Celular , Bicamadas Lipídicas/química , Peptídeos/química , Canais de Potássio/química , Aeropyrum/genética , Aeropyrum/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bicamadas Lipídicas/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Relação Estrutura-Atividade
18.
Biosci Biotechnol Biochem ; 76(3): 589-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22451406

RESUMO

A third novel type of dye-linked L-proline dehydrogenase (LPDH) has recently been found in the hyperthermophilic archaeon, Pyrobaculum calidifontis, by Satomura et al. The gene encoding the enzyme homologue was identified in the aerobic hyperthermophilic archaeon, Aeropyrum pernix. The gene was successfully expressed in Escherichia coli, and the product was purified to homogeneity and characterized. The expressed enzyme was highly thermostable LPDH having a molecular mass of about 88 kDa and a homodimeric structure. The preferred substrate for the enzyme was L-proline with 2,6-dichloroindophenol (DCIP) as the electron acceptor. However, the enzyme did not utilize ferricyanide as the electron acceptor, in contrast to all other known LPDHs. The electrochemical determination of L-proline at concentrations from 0 to 0.7 mM was achieved by using A. pernix LPDH. A phylogenetic analysis revealed A. pernix LPDH to be clustered with the third type of LPDHs, and to be clearly separated from the clusters of previously known heterooligomeric LPDHs.


Assuntos
Aeropyrum/enzimologia , Prolina Oxidase/genética , Aerobiose , Aeropyrum/genética , Estabilidade Enzimática , Evolução Molecular , Expressão Gênica , Peso Molecular , Filogenia , Prolina Oxidase/química , Prolina Oxidase/metabolismo
19.
Acta Biochim Biophys Sin (Shanghai) ; 44(4): 339-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22366566

RESUMO

Aeropyrum pernix contains one homolog of ribonuclease H (RNase H), A. pernix RNase HII (Ape-RNase HII). Activity characterization showed that Ape-RNase HII exhibited the highest activity in the presence of 5 mM Mn(2+), 1 mM Co(2+), or 10 mM Mg(2+), respectively; however, its cleavage efficiencies at different cleavage sites for Mn(2+) and Mg(2+) were different. Ape-RNase HII cleaved 12-bp RNA/DNA substrates at multiple sites and the optimum pH value was 11.0. Moreover, 16-bp DNA-r4-DNA/DNA and 13-bp DNA-r1-DNA/DNA chimeric substrates were cleaved at DNA-RNA junction. Ape-RNase HII was thermostable and the stabilization was enhanced with increased salt concentration. This work is believed to be the first in vitro functional study of Ape-RNase HII and the results should contribute to the analysis of RNase H of other archaeal species.


Assuntos
Aeropyrum/enzimologia , Proteínas Arqueais/metabolismo , Ribonuclease H/metabolismo , Aeropyrum/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Cobalto/farmacologia , DNA Arqueal/genética , DNA Arqueal/metabolismo , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Manganês/farmacologia , Dados de Sequência Molecular , RNA Arqueal/genética , RNA Arqueal/metabolismo , Proteínas Recombinantes/metabolismo , Ribonuclease H/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
20.
Acta Biochim Biophys Sin (Shanghai) ; 44(12): 965-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23099882

RESUMO

Protein domain swapping is an efficient way in protein functional evolution in vivo and also has been proved to be an effective strategy to modify the function of the multi-domain proteins in vitro. To explore the potentials of domain swapping for alteration of the enzyme substrate specificities and the structure-function relationship of the homologous proteins, here we constructed two chimeras from a pair of thermophilic members of the α/ß hydrolase superfamily by grafting their functional domains to the conserved α/ß hydrolase fold domain: a carboxylesterase from Archaeoglobus fulgidus (AFEST) and an acylpeptide hydrolase from Aeropyrum pernix K1 (apAPH) and explored their activities on hydrolyze p-nitrophenyl esters (pNP) with different acyl chain lengths. We took two approaches to reduce the crossover disruptions when creating the chimeras: chose the residue which involved in the least contacts as the splicing site and optimized the newly formed domain interfaces of the chimeras by site-directed mutations. Characterizations of AAM7 and PAR showed that these chimeras inherited the thermophilic property of both parents. In the aspect of substrate specificity, AAM7 and PAR showed highest activity towards short chain length substrate pNPC4 and middle chain length substrate pNPC8, similar to parent AFEST and apAPH, respectively. These results suggested that the substrate-binding domain is the dominant factor on enzyme substrate specificity, and the optimization of the newly formed domain interface is an important guarantee for successful domain swapping of proteins with low-sequence homology.


Assuntos
Proteínas Arqueais/química , Hidrolases/química , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Aeropyrum/enzimologia , Aeropyrum/genética , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/enzimologia , Archaeoglobus fulgidus/genética , Sítios de Ligação/genética , Dicroísmo Circular , Cristalografia por Raios X , Estabilidade Enzimática , Ésteres , Concentração de Íons de Hidrogênio , Hidrolases/genética , Hidrolases/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Nitrofenóis/química , Nitrofenóis/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA