Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.136
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(10): 2680-2695.e26, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33932340

RESUMO

Enzyme-mediated damage repair or mitigation, while common for nucleic acids, is rare for proteins. Examples of protein damage are elimination of phosphorylated Ser/Thr to dehydroalanine/dehydrobutyrine (Dha/Dhb) in pathogenesis and aging. Bacterial LanC enzymes use Dha/Dhb to form carbon-sulfur linkages in antimicrobial peptides, but the functions of eukaryotic LanC-like (LanCL) counterparts are unknown. We show that LanCLs catalyze the addition of glutathione to Dha/Dhb in proteins, driving irreversible C-glutathionylation. Chemo-enzymatic methods were developed to site-selectively incorporate Dha/Dhb at phospho-regulated sites in kinases. In human MAPK-MEK1, such "elimination damage" generated aberrantly activated kinases, which were deactivated by LanCL-mediated C-glutathionylation. Surveys of endogenous proteins bearing damage from elimination (the eliminylome) also suggest it is a source of electrophilic reactivity. LanCLs thus remove these reactive electrophiles and their potentially dysregulatory effects from the proteome. As knockout of LanCL in mice can result in premature death, repair of this kind of protein damage appears important physiologically.


Assuntos
Alanina/análogos & derivados , Aminobutiratos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteoma , Receptores Acoplados a Proteínas G/metabolismo , Alanina/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Feminino , Glutationa/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 1/metabolismo , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/genética , Fosforilação , Domínios Proteicos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Sulfetos/metabolismo
2.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526208

RESUMO

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Assuntos
Betacoronavirus/química , Betacoronavirus/enzimologia , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Alanina/farmacologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Domínio Catalítico , RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , Modelos Químicos , Modelos Moleculares , RNA Viral/metabolismo , SARS-CoV-2 , Transcrição Gênica , Replicação Viral
3.
Cell ; 178(1): 76-90.e22, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31155236

RESUMO

In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.


Assuntos
Alanina/metabolismo , Bacillus subtilis/metabolismo , Células Procarióticas/metabolismo , Proteólise , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Cell ; 172(1-2): 234-248.e17, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307489

RESUMO

The transition from the fed to the fasted state necessitates a shift from carbohydrate to fat metabolism that is thought to be mostly orchestrated by reductions in plasma insulin concentrations. Here, we show in awake rats that insulinopenia per se does not cause this transition but that both hypoleptinemia and insulinopenia are necessary. Furthermore, we show that hypoleptinemia mediates a glucose-fatty acid cycle through activation of the hypothalamic-pituitary-adrenal axis, resulting in increased white adipose tissue (WAT) lipolysis rates and increased hepatic acetyl-coenzyme A (CoA) content, which are essential to maintain gluconeogenesis during starvation. We also show that in prolonged starvation, substrate limitation due to reduced rates of glucose-alanine cycling lowers rates of hepatic mitochondrial anaplerosis, oxidation, and gluconeogenesis. Taken together, these data identify a leptin-mediated glucose-fatty acid cycle that integrates responses of the muscle, WAT, and liver to promote a shift from carbohydrate to fat oxidation and maintain glucose homeostasis during starvation.


Assuntos
Glicemia/metabolismo , Ácidos Graxos/metabolismo , Gluconeogênese , Homeostase , Leptina/metabolismo , Inanição/metabolismo , Tecido Adiposo Branco/metabolismo , Alanina/metabolismo , Animais , Insulina/sangue , Leptina/sangue , Lipólise , Fígado/metabolismo , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Cell ; 172(4): 696-705.e12, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398115

RESUMO

Protein aggregation and dysfunction of the ubiquitin-proteasome system are hallmarks of many neurodegenerative diseases. Here, we address the elusive link between these phenomena by employing cryo-electron tomography to dissect the molecular architecture of protein aggregates within intact neurons at high resolution. We focus on the poly-Gly-Ala (poly-GA) aggregates resulting from aberrant translation of an expanded GGGGCC repeat in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. We find that poly-GA aggregates consist of densely packed twisted ribbons that recruit numerous 26S proteasome complexes, while other macromolecules are largely excluded. Proximity to poly-GA ribbons stabilizes a transient substrate-processing conformation of the 26S proteasome, suggesting stalled degradation. Thus, poly-GA aggregates may compromise neuronal proteostasis by driving the accumulation and functional impairment of a large fraction of cellular proteasomes.


Assuntos
Alanina/análogos & derivados , Proteína C9orf72 , Neurônios , Ácido Poliglutâmico , Complexo de Endopeptidases do Proteassoma , Agregados Proteicos , Alanina/genética , Alanina/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Neurônios/metabolismo , Neurônios/patologia , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Ratos , Ratos Sprague-Dawley
6.
Mol Cell ; 81(10): 2112-2122.e7, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33909987

RESUMO

Incompletely synthesized nascent chains obstructing large ribosomal subunits are targeted for degradation by ribosome-associated quality control (RQC). In bacterial RQC, RqcH marks the nascent chains with C-terminal alanine (Ala) tails that are directly recognized by proteasome-like proteases, whereas in eukaryotes, RqcH orthologs (Rqc2/NEMF [nuclear export mediator factor]) assist the Ltn1/Listerin E3 ligase in nascent chain ubiquitylation. Here, we study RQC-mediated proteolytic targeting of ribosome stalling products in mammalian cells. We show that mammalian NEMF has an additional, Listerin-independent proteolytic role, which, as in bacteria, is mediated by tRNA-Ala binding and Ala tailing. However, in mammalian cells Ala tails signal proteolysis indirectly, through a pathway that recognizes C-terminal degrons; we identify the CRL2KLHDC10 E3 ligase complex and the novel C-end rule E3, Pirh2/Rchy1, as bona fide RQC pathway components that directly bind to Ala-tailed ribosome stalling products and target them for degradation. As Listerin mutation causes neurodegeneration in mice, functionally redundant E3s may likewise be implicated in molecular mechanisms of neurodegeneration.


Assuntos
Alanina/metabolismo , Mamíferos/metabolismo , Proteólise , Ribossomos/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Citocinas/metabolismo , Proteínas Salivares Ricas em Prolina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Nature ; 585(7826): 530-537, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32968259

RESUMO

Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature1,2. Although synthetic protein functionalization strategies allow mimicry of PTMs3,4, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying5, tracking, imaging6 and partner crosslinking7, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C• radicals that form the native (ß-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C• radicals that form equivalent ß-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized 'alkylator proteins' with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function.


Assuntos
Luz , Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteínas/química , Proteínas/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Sítios de Ligação , Carbono/química , Carbono/metabolismo , Enzimas/química , Enzimas/metabolismo , Ésteres/síntese química , Ésteres/química , Células HeLa , Humanos , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/metabolismo , Indicadores e Reagentes/química , Oxirredução , Processos Fotoquímicos/efeitos da radiação , Domínios e Motivos de Interação entre Proteínas
8.
Nature ; 586(7831): 790-795, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788725

RESUMO

Serine, glycine and other nonessential amino acids are critical for tumour progression, and strategies to limit their availability are emerging as potential therapies for cancer1-3. However, the molecular mechanisms driving this response remain unclear and the effects on lipid metabolism are relatively unexplored. Serine palmitoyltransferase (SPT) catalyses the de novo biosynthesis of sphingolipids but also produces noncanonical 1-deoxysphingolipids when using alanine as a substrate4,5. Deoxysphingolipids accumulate in the context of mutations in SPTLC1 or SPTLC26,7-or in conditions of low serine availability8,9-to drive neuropathy, and deoxysphinganine has previously been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and the promiscuity of SPT to modulate the endogenous synthesis of toxic deoxysphingolipids and slow tumour progression. Anchorage-independent growth reprogrammes a metabolic network involving serine, alanine and pyruvate that drives the endogenous synthesis and accumulation of deoxysphingolipids. Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Serina/deficiência , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Alanina/biossíntese , Alanina/metabolismo , Alanina/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Dieta , Feminino , Glicina/biossíntese , Glicina/deficiência , Glicina/metabolismo , Glicina/farmacologia , Células HCT116 , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Serina/sangue , Serina/farmacologia , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Esferoides Celulares/patologia , Esfingolipídeos/biossíntese , Estresse Fisiológico/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35181608

RESUMO

Dynamic biomaterials excel at recapitulating the reversible interlocking and remoldable structure of the extracellular matrix (ECM), particularly in manipulating cell behaviors and adapting to tissue morphogenesis. While strategies based on dynamic chemistries have been extensively studied for ECM-mimicking dynamic biomaterials, biocompatible molecular means with biogenicity are still rare. Here, we report a nature-derived strategy for fabrication of dynamic biointerface as well as a three-dimensional (3D) hydrogel structure based on reversible receptor-ligand interaction between the glycopeptide antibiotic vancomycin and dipeptide d-Ala-d-Ala. We demonstrate the reversible regulation of multiple cell types with the dynamic biointerface and successfully implement the dynamic hydrogel as a functional antibacterial 3D scaffold to treat tissue repair. In view of the biogenicity and high applicability, this nature-derived reversible molecular strategy will bring opportunities for malleable biomaterial design with great potential in biomedicine.


Assuntos
Matriz Extracelular/química , Matriz Extracelular/fisiologia , Engenharia de Proteínas/métodos , Alanina/química , Alanina/metabolismo , Materiais Biocompatíveis/química , Biomimética/métodos , Dipeptídeos/metabolismo , Humanos , Hidrogéis/química , Ligantes , Vancomicina/química , Vancomicina/metabolismo
10.
Biochemistry ; 63(12): 1569-1577, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38813769

RESUMO

The Escherichia coli cysteine desulfurase SufS (EcSufS) is a dimeric, PLP-dependent enzyme responsible for sulfur mobilization in the SUF Fe-S cluster bioassembly pathway. The enzyme uses cysteine as a sulfur source and generates alanine and a covalent persulfide located on an active site of cysteine. Optimal in vitro activity of EcSufS requires the presence of the transpersulfurase protein, EcSufE, and a strong reductant. Here, presteady-state and single-turnover kinetics are used to investigate the mechanism of EcSufS activation by EcSufE. In the absence of EcSufE, EcSufS exhibits a presteady-state burst of product production with an amplitude of ∼0.4 active site equivalents, consistent with a half-sites reactivity. KinTek Explorer was used to isolate the first turnover of alanine formation and fit the data with a simplified kinetic mechanism with steps for alanine formation (k3) and a net rate constant for the downstream steps (k5). Using this treatment, microscopic rate constants of 2.3 ± 0.5 s-1 and 0.10 ± 0.01 s-1 were determined for k3 and k5, respectively. The inclusion of EcSufE in the reaction results in a similar rate constant for k3 but induces a 10-fold enhancement of k5 to 1.1 ± 0.2 s-1, such that both steps are partially rate-determining. The most likely downstream step where EcSufE could exert influence on EcSufS activity is the removal of the persulfide intermediate. Importantly, this step appears to serve as a limiting feature in the half-sites activity such that activating persulfide transfer allows for rapid shifting between active sites. Single-turnover assays show that the presence of EcSufE slightly slowed the rates of alanine-forming steps, suggesting it does not activate steps in the desulfurase half reaction.


Assuntos
Liases de Carbono-Enxofre , Proteínas de Escherichia coli , Escherichia coli , Sulfetos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Sulfetos/metabolismo , Sulfetos/química , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/química , Alanina/metabolismo , Alanina/química , Domínio Catalítico , Cisteína/metabolismo , Cisteína/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química
11.
J Biol Chem ; 299(8): 105019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422193

RESUMO

Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.


Assuntos
Distrofia Muscular Oculofaríngea , Poliadenilação , Humanos , Alanina/metabolismo , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , RNA/metabolismo
12.
J Biol Chem ; 299(12): 105375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865313

RESUMO

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.


Assuntos
Acidose Láctica , Alanina , Músculo Esquelético , Complexo Piruvato Desidrogenase , Ácido Pirúvico , Animais , Camundongos , Acidose Láctica/fisiopatologia , Glucose/metabolismo , Músculo Esquelético/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Glutamina/metabolismo , Alanina/metabolismo , Deleção de Genes , Dieta , Mortalidade Prematura
13.
J Biol Chem ; 299(12): 105380, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866629

RESUMO

Mitochondrial fission protein 1 (Fis1) and dynamin-related protein 1 (Drp1) are the only two proteins evolutionarily conserved for mitochondrial fission, and directly interact in Saccharomyces cerevisiae to facilitate membrane scission. However, it remains unclear if a direct interaction is conserved in higher eukaryotes as other Drp1 recruiters, not present in yeast, are known. Using NMR, differential scanning fluorimetry, and microscale thermophoresis, we determined that human Fis1 directly interacts with human Drp1 (KD = 12-68 µM), and appears to prevent Drp1 assembly, but not GTP hydrolysis. Similar to yeast, the Fis1-Drp1 interaction appears governed by two structural features of Fis1: its N-terminal arm and a conserved surface. Alanine scanning mutagenesis of the arm identified both loss-of-function and gain-of-function alleles with mitochondrial morphologies ranging from highly elongated (N6A) to highly fragmented (E7A), demonstrating a profound ability of Fis1 to govern morphology in human cells. An integrated analysis identified a conserved Fis1 residue, Y76, that upon substitution to alanine, but not phenylalanine, also caused highly fragmented mitochondria. The similar phenotypic effects of the E7A and Y76A substitutions, along with NMR data, support that intramolecular interactions occur between the arm and a conserved surface on Fis1 to promote Drp1-mediated fission as in S. cerevisiae. These findings indicate that some aspects of Drp1-mediated fission in humans derive from direct Fis1-Drp1 interactions that are conserved across eukaryotes.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Proteínas Mitocondriais , Humanos , Alanina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Am J Physiol Endocrinol Metab ; 326(4): E515-E527, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353639

RESUMO

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.


Assuntos
Gluconeogênese , Hipoglicemia , Camundongos , Animais , Gluconeogênese/genética , Ácido Pirúvico/metabolismo , Tolerância ao Exercício , Fígado/metabolismo , Glucose/metabolismo , Hipoglicemia/metabolismo , Lactatos/metabolismo , Alanina/metabolismo , Aminoácidos/metabolismo
15.
Biochem Biophys Res Commun ; 694: 149383, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38150918

RESUMO

Metformin is currently a strong candidate antitumor agent for multiple cancers, and has the potential to inhibit cancer cell viability, growth, and proliferation. Metabolic reprogramming is a critical feature of cancer cells. However, the effects of metformin which targets glucose metabolism on HepG2 cancer cells remain unclear. In this study, to explore the effects of metformin on glucose metabolism in HepG2 cells, we conducted real-time metabolomic monitoring of live HepG2 cells treated with metformin using 13C in-cell NMR spectroscopy. Metabolic tracing with U-13C6-glucose revealed that metformin significantly increased the production of 13C-G3P and 13C-glycerol, which were reported to attenuate liver cancer development, but decreased the production of potential oncogenesis-supportive metabolites, including 13C-lactate, 13C-alanine, 13C-glycine, and 13C-glutamate. Moreover, the expression levels of enzymes associated with the measured metabolites were carried out. The results showed that the levels of ALT1, MCT4, GPD2 and MPC1 were greatly reduced, which were consistent with the changes of measured metabolites in 13C in-cell NMR spectroscopy. Overall, our approach directly provides fundamental insights into the effects of metformin on glucose metabolism in live HepG2 cells, and highlights the potential mechanism of metformin, including the increase in production of G3P and glycerol derived from glucose, as well as the inhibition of glucose incorporation into lactate, alanine, glutamate, and glycine.


Assuntos
Metformina , Humanos , Metformina/farmacologia , Células Hep G2 , Glicerol , Espectroscopia de Ressonância Magnética , Glucose/metabolismo , Alanina/metabolismo , Ácido Glutâmico , Glicina , Lactatos
16.
Drug Metab Rev ; 56(2): 127-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445647

RESUMO

Severe acute respiratory syndrome 2 (SARS-CoV-2) caused the emergence of the COVID-19 pandemic all over the world. Several studies have suggested that antiviral drugs such as favipiravir (FAV), remdesivir (RDV), and lopinavir (LPV) may potentially prevent the spread of the virus in the host cells and person-to-person transmission. Simultaneously with the widespread use of these drugs, their stability and action mechanism studies have also attracted the attention of many researchers. This review focuses on the action mechanism, metabolites and degradation products of these antiviral drugs (FAV, RDV and LPV) and demonstrates various methods for their quantification and discrimination in the different biological samples. Herein, the instrumental methods for analysis of the main form of drugs or their metabolite and degradation products are classified into two types: optical and chromatography methods which the last one in combination with various detectors provides a powerful method for routine and stability analyses. Some representative studies are reported in this review and the details of them are carefully explained. It is hoped that this review will be a good guideline study and provide a better understanding of these drugs from the aspects investigated in this study.


Assuntos
Monofosfato de Adenosina , Monofosfato de Adenosina/análogos & derivados , Alanina , Alanina/análogos & derivados , Amidas , Antivirais , Tratamento Farmacológico da COVID-19 , Lopinavir , Pirazinas , Pirazinas/metabolismo , Amidas/metabolismo , Amidas/química , Antivirais/farmacologia , Monofosfato de Adenosina/metabolismo , Humanos , Alanina/metabolismo , Lopinavir/uso terapêutico , Lopinavir/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Animais
17.
Magn Reson Med ; 91(4): 1625-1636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115605

RESUMO

PURPOSE: Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS: Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS: Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION: HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Metionina/metabolismo , Colina/metabolismo , Ácido Pirúvico/metabolismo , Ácido Aspártico/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Ratos Wistar , Fígado/metabolismo , Racemetionina/metabolismo , Dieta , Triglicerídeos , Alanina/metabolismo , Lactatos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
Plant Cell ; 33(8): 2776-2793, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34137858

RESUMO

Malate oxidation by plant mitochondria enables the generation of both oxaloacetate and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here, we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its putative orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis thaliana mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis was largely maintained except for alanine and glutamate, indicating that transamination contributes to the restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Acrilatos/farmacologia , Alanina/metabolismo , Alanina Transaminase/antagonistas & inibidores , Proteínas de Transporte de Ânions/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Ciclosserina/farmacologia , Inibidores Enzimáticos/farmacologia , Malato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos/genética , Complexos Multiproteicos/metabolismo , NAD/metabolismo , Plantas Geneticamente Modificadas
19.
J Nutr ; 154(2): 505-515, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141773

RESUMO

BACKGROUND: Continuous feeding does not elicit an optimal anabolic response in skeletal muscle but is required for some preterm infants. We reported previously that intermittent intravenous pulses of leucine (Leu; 800 µmol Leu·kg-1·h-1 every 4 h) to continuously fed pigs born at term promoted mechanistic target of rapamycin complex 1 (mTORC1) activation and protein synthesis in skeletal muscle. OBJECTIVES: The aim was to determine the extent to which intravenous Leu pulses activate mTORC1 and enhance protein synthesis in the skeletal muscle of continuously fed pigs born preterm. METHODS: Pigs delivered 10 d preterm was advanced to full oral feeding >4 d and then assigned to 1 of the following 4 treatments for 28 h: 1) ALA (continuous feeding; pulsed with 800 µmol alanine·kg-1·h-1 every 4 h; n = 8); 2) L1× (continuous feeding; pulsed with 800 µmol Leu·kg-1·h-1 every 4 h; n = 7); 3) L2× (continuous feeding; pulsed with 1600 µmol Leu·kg-1·h-1 every 4 h; n = 8); and 4) INT (intermittent feeding every 4 h; supplied with 800 µmol alanine·kg-1 per feeding; n = 7). Muscle protein synthesis rates were determined with L-[2H5-ring]Phenylalanine. The activation of insulin, amino acid, and translation initiation signaling pathways were assessed by Western blot. RESULTS: Peak plasma Leu concentrations were 134% and 420% greater in the L2× compared to the L1× and ALA groups, respectively (P < 0.01). Protein synthesis was greater in the L2× than in the ALA and L1× groups in both the longissimus dorsi and gastrocnemius muscles (P < 0.05) but not different from the INT group (P > 0.10). Amino acid signaling upstream and translation initiation signaling downstream of mTORC1 largely corresponded to the differences in protein synthesis. CONCLUSIONS: Intravenous Leu pulses potentiate mTORC1 activity and protein synthesis in the skeletal muscles of continuously fed preterm pigs, but the amount required is greater than in pigs born at term.


Assuntos
Nutrição Enteral , Recém-Nascido Prematuro , Animais , Suínos , Recém-Nascido , Humanos , Leucina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais Recém-Nascidos , Músculo Esquelético/metabolismo , Aminoácidos/metabolismo , Alanina/metabolismo
20.
J Exp Biol ; 227(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197261

RESUMO

The olfactory epithelium of fish is - of necessity - in intimate contact with the surrounding water. In euryhaline fish, movement from seawater to freshwater (and vice versa) exposes the epithelium to massive changes in salinity and ionic concentrations. How does the olfactory system function in the face of such changes? The current study compared olfactory sensitivity in seawater- (35‰) and brackish water-adapted seabass (5‰) using extracellular multi-unit recording from the olfactory nerve. Seawater-adapted bass had higher olfactory sensitivity to amino acid odorants when delivered in seawater than in freshwater. Conversely, brackish water-adapted bass had largely similar sensitivities to the same odorants when delivered in seawater or freshwater, although sensitivity was still slightly higher in seawater. The olfactory system of seawater-adapted bass was sensitive to decreases in external [Ca2+], whereas brackish water-adapted bass responded to increases in [Ca2+]; both seawater- and brackish water-adapted bass responded to increases in external [Na+] but the sensitivity was markedly higher in brackish water-adapted bass. In seawater-adapted bass, olfactory sensitivity to l-alanine depended on external Ca2+ ions, but not Na+; brackish water-adapted bass did respond to l-alanine in the absence of Ca2+, albeit with lower sensitivity, whereas sensitivity was unaffected by removal of Na+ ions. A possible adaptation of the olfactory epithelium was the higher number of mucous cells in brackish water-adapted bass. The olfactory system of seabass is able to adapt to low salinities, but this is not immediate; further studies are needed to identify the processes involved.


Assuntos
Bass , Animais , Bass/fisiologia , Salinidade , Cálcio/metabolismo , Água do Mar/química , Água/metabolismo , Sódio/metabolismo , Alanina/metabolismo , Brânquias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA