RESUMO
Nineteen samples from members of the plant genera Agapanthus, Clivia, Hippeastrum, and Scadoxus were collected from gardens in the Gauteng and Western Cape provinces of South Africa. The plants displayed highly variable symptoms of viral disease, including chlorosis, necrosis, streaking, and ringspot. RNAtag-seq was used to characterize the associated viral populations. Plants of the genus Agapanthus were found to be associated with three novel viruses from the families Caulimoviridae, Closteroviridae, and Betaflexiviridae; plants of the genus Clivia were associated with novel members of the families Potyviridae and Betaflexiviridae; and plants of the genus Scadoxus were associated with a novel member of the family Tospoviridae. Nerine latent virus was associated with plants of the genera Agapanthus, Clivia, and Hippeastrum, while hippeastrum mosaic virus was associated exclusively with a Hippeastrum cultivar.
Assuntos
Amaryllidaceae/virologia , Vírus de Plantas/isolamento & purificação , Amaryllidaceae/classificação , Sequência de Aminoácidos , Genoma Viral/genética , Especificidade de Hospedeiro , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , África do Sul , Proteínas Virais/genéticaRESUMO
Hybridization is a frequent and important force in plant evolution. Next-generation sequencing (NGS) methods offer new possibilities for clade resolution and ambitious sampling of gene genealogies, yet difficulty remains in detecting deep reticulation events using currently available methods. We reconstructed the phylogeny of diploid representatives of Amaryllidaceae tribe Hippeastreae to test the hypothesis of ancient hybridizations preceding the radiation of its major subclade, Hippeastrinae. Through hybrid enrichment of DNA libraries and NGS, we obtained data for 18 nuclear loci through a curated assembly approach and nearly complete plastid genomes for 35 ingroup taxa plus 5 outgroups. Additionally, we obtained alignments for 39 loci through an automated assembly algorithm. These data were analyzed with diverse phylogenetic methods, including concatenation, coalescence-based species tree estimation, Bayesian concordance analysis, and network reconstructions, to provide insights into the evolutionary relationships of Hippeastreae. Causes for gene tree heterogeneity and cytonuclear discordance were examined through a Bayesian posterior predictive approach (JML) and coalescent simulations. Two major clades were found, Hippeastrinae and Traubiinae, as previously reported. Our results suggest the presence of two major nuclear lineages in Hippeastrinae characterized by different chromosome numbers: (1) Tocantinia and Hippeastrum with 2n=22, and (2) Eithea, Habranthus, Rhodophiala, and Zephyranthes mostly with 2n=12, 14, and 18. Strong cytonuclear discordance was confirmed in Hippeastrinae, and a network scenario with at least six hybridization events is proposed to reconcile nuclear and plastid signals, along a backbone that may also have been affected by incomplete lineage sorting at the base of each major subclade.
Assuntos
Amaryllidaceae/anatomia & histologia , Amaryllidaceae/classificação , Diploide , Filogenia , Teorema de Bayes , Núcleo Celular/genética , Simulação por Computador , Loci Gênicos , Humanos , Hibridização Genética , Funções Verossimilhança , Plastídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
Agapanthus (Agapanthaceae) has 10 species described. However, most taxonomists differ respect to this number because the great phenotypic plasticity of the species. The cytogenetic has been an important tool to aid the plant taxon identification, and to date, all taxa of Agapanthus L'Héritier studied cytologically, presented 2n = 30. Although the species possess large chromosomes, the group is karyologically little explored. This work aimed to increase the cytogenetic knowledge of Agapanthus africanus (L.) Hoffmanns by utilization of chromosome banding techniques with DAPI / CMA3 and Fluorescent in situ Hybridization (FISH). In addition, flow cytometry was used for determination of DNA content and the percentage of AT / GC nitrogenous bases. Plants studied showed 2n = 30 chromosomes, ranging from 4.34 - 8.55 µm, with the karyotype formulae (KF) = 10m + 5sm. Through FISH, one 45S rDNA signal was observed proximally to centromere of the chromosome 7, while for 5S rDNA sites we observed one signal proximally to centromere of chromosome 9. The 2C DNA content estimated for the species was 2C = 24.4 with 59% of AT and 41% of GC. Our data allowed important upgrade for biology and cytotaxonomy of Agapanthus africanus (L.) Hoffmanns.
Assuntos
Amaryllidaceae/genética , Bandeamento Cromossômico/métodos , DNA de Plantas/química , DNA Ribossômico/química , Heterocromatina/química , Amaryllidaceae/classificação , Composição de Bases , Hibridização in Situ Fluorescente , CariotipagemRESUMO
BACKGROUND: Amaryllidaceae plants are known to be a great source of alkaloids, which are considered an extensive group of compounds encompassing a wide range of biological activities. The remarkable cytotoxic activities observed in most of the Amaryllidaceae alkaloids derivatives have prompt the chemical and biological investigations in unexplored species from Brazil. OBJECTIVE: To evaluate the cytotoxic and genotoxic properties of alkaloids of Griffinia gardneriana and Habranthus itaobinus bulbs and study the role of caspase-3 as a molecular apoptosis mediator. METHODS: Methanolic crude extracts of Griffinia gardneriana and Habranthus itaobinus bulbs were submitted to acid-base extraction to obtain alkaloid-enriched fractions. The obtained fractions were fractionated using chromatographic techniques leading to isolation and identification of some alkaloids accomplished via HPLC and 1H-NMR, respectively. Molecular docking studies assessed the amount of free binding energy between the isolated alkaloids with the caspase-3 protein and also calculated the theoretical value of Ki. Studies have also been developed to evaluate in vitro cytotoxicity and genotoxicity in such alkaloids and apoptosis activation via the caspase pathway using both tumor and normal cell lines. RESULTS: Seven alkaloids were isolated and identified. Among these, 11-hydroxyvittatine and 2-α-7- dimethoxyhomolycorine were not cytotoxic, whereas tazettine, trisphaeridine, and sanguinine only showed activity against the fibroblast lineage. Lycorine and pretazettine were 10 to 30 folds more cytotoxic than the other alkaloids, including cancerous lines, and were genotoxic and capable of promoting apoptosis via the caspase-3 pathway. This result supports data obtained in docking studies wherein these two compounds exhibited the highest free energy values. CONCLUSION: The cytotoxicity assay revealed that, among the seven alkaloids isolated, only lycorine and pretazettine were active against different cell lines, exhibiting concentration- and time-dependent cytotoxic actions alongside genotoxic action and the ability to induce apoptosis by caspase-3, a result consistent with those obtained in docking studies.
Assuntos
Alcaloides/farmacologia , Amaryllidaceae/química , Antineoplásicos Fitogênicos/farmacologia , Mutagênicos/farmacologia , Extratos Vegetais/farmacologia , Amaryllidaceae/classificação , Animais , Apoptose/efeitos dos fármacos , Células CHO , Linhagem Celular Tumoral , Cricetulus , Humanos , Simulação de Acoplamento Molecular , Especificidade da EspécieRESUMO
Malaria is prevalent in tropical and subtropical regions of the globe. With over 200 million cases reported annually, particularly in sub-Saharan Africa, it is an unnecessary burden to already overworked and ailing healthcare structures. Traditional medicine (TM) remains vibrant in most of these regions wherein plants often serve as the first line of defense against malaria. Given this fact as well as the successes elsewhere of therapies such as Artemisia annua emanating from evidence-based TM, interest in plants as a source of new antimalarial drugs has been rejuvenated. The bulbous plant family Amaryllidaceae is recognized for its structurally-diverse alkaloid constituents which exhibit interesting biological properties. This review focuses on the in vitro activities demonstrated by its crinane alkaloids against various strains of the malaria-causing parasite Plasmodium falciparum. The survey embraces the twelve genera of the Amaryllidaceae whose nineteen representative species have been examined for antiplasmodial crinane alkaloid principles. A total of seventy-two compounds were screened against nine strains of P. falciparum, with the α-crinanes reflecting better overall activities than their corresponding ß-crinane subgroup congeners. In terms of potency, an ED50 of 0.14⯵g/mL (for augustine in the D-6 strain) and IC50 of 0.35⯵g/mL (for haemanthidine in the K1 strain) were the lowest activity indices observed. Structure-activity relationship studies afforded useful insight on the antiplasmodial pharmacophore and the features supporting its efficacy. Overall, crinane alkaloids have provided a useful platform for the study of antiplasmodial effects, not only in terms of potency but also in terms of structural diversity.
Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Amaryllidaceae/química , Antimaláricos/farmacologia , Amaryllidaceae/classificação , Alcaloides de Amaryllidaceae/isolamento & purificação , Antimaláricos/isolamento & purificação , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Plasmodium falciparum/efeitos dos fármacosRESUMO
Palyno-anatomical study of monocots taxa using Light and Scanning Electron Microscopy (SEM) was first time conducted with a view to evaluating their taxonomic significance. Studied plants were collected from different eco-climatic zones of Pakistan ranges from tropical, sub-tropical, and moist habitats. The aim of this study is to use palyno-anatomical features for the correct identification, systematic comparison, and investigation to elucidate the taxonomic significance of these features, which are useful to taxonomists for identifying monocot taxa. A signification variation was observed in quantitative and qualitative characters by using the standard protocol of light microscopy (LM) and SEM. Epidermal cell length varied from maximum in Allium griffthianum (480 ± 35.9) µm at the adaxial surface to minimum in Canna indica (33.6 ± 8.53) µm on abaxial surface. Maximum exine thickness was observed in Canna indica (4.46) µm and minimum in Allium grifthianum (0.8) µm. Variation was observed in shape and exine ornamentation of the pollen, shape of the epidermal cell, number, size, and type of stomata, guard cell shape, and anticlinal wall pattern. Based on these palyno-anatomical features a taxonomic key was developed, which help in the discrimination of studied taxa. In conclusion, LM and SEM pollen and epidermal morphology is explanatory, significant, and can be of special interest for the plant taxonomist in the correct identification of monocots taxa.
Assuntos
Amaryllidaceae/anatomia & histologia , Araceae/anatomia & histologia , Asparagaceae/anatomia & histologia , Células Epidérmicas/ultraestrutura , Liliaceae/anatomia & histologia , Epiderme Vegetal/ultraestrutura , Pólen/ultraestrutura , Amaryllidaceae/classificação , Araceae/classificação , Asparagaceae/classificação , Ecossistema , Liliaceae/classificação , Microscopia Eletrônica de Varredura , PaquistãoRESUMO
Abstract Free-living amoebae of the genus Acanthamoeba are the causative agents of granulomatous encephalitis and keratitis, severe human infections. Bioactive compounds from plants are recognized as an alternative source for the development of new drugs. The Amaryllidaceae is a botanical family able to synthesize a very specific and consistent group of biologically active isoquinoline-like alkaloids. The alkaloidal fractions from the Brazilian species Hippeastrum canastrense, H. diniz-cruziae, H. puniceum, and Crinum x amabile, along with the alkaloid lycorine, were investigated against Acanthamoeba castellanii. The in vitro assays were performed with distinct concentrations of lycorine and alkaloidal fractions, while the cell viability was evaluated by the MTT method upon MDCK cells. Chlorhexidine 0.02% was used as the positive control. The effect of alkaloid fractions was concentration dependent, and 2000 µg mL-1 of H. canastrense and H. diniz-cruziae provided a 100% inhibition. At concentrations of 250, 500, and 1000 µg mL-1, the H. diniz-cruziae alkaloidal fraction showed the lowest cytotoxic effect (5%-7%) and remarkable anti-amoebic activity, demonstrating values of IC50 285.61 µg mL-1, low cytotoxicity (5%-7%), and selectivity index (7.0). Taken together, the results are indicative of the great potential that the alkaloids from H. diniz-cruziae have as new candidates for anti-amoebicidal compounds
Assuntos
Acanthamoeba castellanii/classificação , Alcaloides/administração & dosagem , Amaryllidaceae/classificação , Produtos Biológicos , Preparações Farmacêuticas/análise , Células Madin Darby de Rim Canino , Compostos FitoquímicosRESUMO
Hippeastrum puniceum is a species that belongs to the Amaryllidaceae family. A particular characteristic of this family is the consistent and very specific presence of isoquinoline alkaloids, which have demonstrated a wide range of biological activities such as antioxidant, antiviral, antifungal, antiparasitic, and acetylcholinesterase inhibitory activity, among others. In the present work, fifteen alkaloids were identified from the bulbs of Hippeastrum puniceum (Lam.) Kuntz using a GC-MS approach. The alkaloids 9-O-demethyllycoramine, 9-demethyl-2α-hydroxyhomolycorine, lycorine and tazettine were isolated through chromatographic techniques. The typical Amaryllidaceae alkaloids lycorine and tazettine, along with the crude and ethyl acetate extract from bulbs of the species were evaluated for their inhibitory potential on α-amylase, α-glucosidase, tyrosinase and acetylcholinesterase activity. Although no significant inhibition activity was observed against α-amylase, α-glucosidase and tyrosinase from the tested samples, the crude and ethyl acetate extracts showed remarkable acetylcholinesterase inhibitory activity. The biological activity results that correlated to the alkaloid chemical profile by GC-MS are discussed herein. Therefore, this study contributed to the knowledge of the chemical and biological properties of Hippeastrum puniceum (Lam.) and can subsidize future studies of this species
Assuntos
Alcaloides de Amaryllidaceae/análise , Amaryllidaceae/classificação , Acetilcolinesterase/efeitos adversos , Inibidores da Colinesterase/farmacologia , Acetatos/agonistas , Antioxidantes/farmacologiaRESUMO
Natural products are rapidly becoming the primary sources of novel antimicrobial agents, as resistance to existing antimicrobial agents is increasing. Apart from determining the antimicrobial activity of natural products, it is also important to understand their effects on the virulence factors of microorganisms. This study aimed to determine the antimicrobial activity of Sternbergia species prevalent in Turkey and investigate their role in the inhibition of germination tube and biofilm formation, both of which are known to be important virulence factors of Candida albicans. The antimicrobial activities of the plant extracts were evaluated using bore-plate and broth microdilution method. The extracts' capacity to inhibit the formation of the germ-tube was also evaluated. The findings of our study revealed that Sternbergia lutea, Sternbergia vernalis possessed antimicrobial activities, with MIC values ranging between 0.048 mg/mL and 0.39 mg/mL. The highest antimicrobial activity was observed against Candida dubliniensis (0.048 mg/mL). While evaluating the inhibition of fungal germination activities, S. vernalis extract (at a concentration of 0.09 mg/mL) was found to be the most effective against C. albicans ATCC 90028 strain. The results also indicated that S. vernalis extracts at sub-MIC levels inhibited germ tube formation and modulated the tail-length of germinated cells, both of which are important virulence factors of C. albicans. Furthermore, the inhibition of biofilm-formation was also investigated, and it was found that two Sternbergia spp. extracts at or below MIC levels inhibited biofilm formation.