Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Eur J Oral Sci ; 122(1): 21-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24313748

RESUMO

The sodium pump Na(+)/K(+)-ATPase, expressed in virtually all cells of higher organisms, is involved in establishing a resting membrane potential and in creating a sodium gradient to facilitate a number of membrane-associated transport activities. Na(+)/K(+)-ATPase is an oligomer of α, ß, and γ subunits. Four unique genes encode each of the α and ß subunits. In dental enamel cells, the spatiotemporal expression of Na(+)/K(+)-ATPase is poorly characterized. Using the rat incisor as a model, this study provides a comprehensive expression profile of all four α and all four ß Na(+)/K(+)-ATPase subunits throughout all stages of amelogenesis. Real-time PCR, western blot analysis, and immunolocalization revealed that α1, ß1, and ß3 are expressed in the enamel organ and that all three are most highly expressed during late-maturation-stage amelogenesis. Expression of ß3 was significantly higher than expression of ß1, suggesting that the dominant Na(+)/K(+)-ATPase consists of an α1ß3 dimer. Localization of α1, ß1, and ß3 subunits in ameloblasts was primarily to the cytoplasm and occasionally along the basolateral membranes. Weaker expression was also noted in papillary layer cells during early maturation. Our data support that Na(+)/K(+)-ATPase is functional in maturation-stage ameloblasts.


Assuntos
Órgão do Esmalte/enzimologia , ATPase Trocadora de Sódio-Potássio/genética , Ameloblastos/enzimologia , Amelogênese/genética , Animais , Western Blotting/métodos , Membrana Celular/enzimologia , Citoplasma/enzimologia , Proteínas do Esmalte Dentário/genética , Perfilação da Expressão Gênica/métodos , Incisivo/embriologia , Masculino , Modelos Animais , Multimerização Proteica , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
2.
Eur J Oral Sci ; 122(2): 114-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24495128

RESUMO

Matrix metalloproteinase-20 (Mmp20) plays an essential role in amelogenesis during tooth development and is regulated by transforming growth factor-ß1 (TGF-ß1) in mouse ameloblast lineage cells (ALCs). The objective of this study was to explore the role of myocyte enhancer factor-2C (MEF2C), a key transcription factor in craniofacial development, in TGF-ß1-induced Mmp20 gene expression. We investigated Mmp20 expression in ALCs over-expressing MEF2C and in ALCs with MEF2C knocked down. We also analyzed activity of the Mmp20 promoter using a transient reporter gene-expression assay in cultured ALCs. Putative transcription factor-binding sites for MEF2C and TGF-ß1 on the Mmp20 promoter were analyzed with bioinformatics tools and examined using an electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). The expression of Mmp20 was induced, in a dose-dependent manner, by MEF2C over-expression, and TGF-ß1-induced Mmp20 expression was blocked by MEF2C knockdown in ALCs. There was a TGF-ß1/MEF2C-responsive region, including a putative MEF2-binding site, between base pairs -356 and -73 of the Mmp20 promoter. Mutation of the putative MEF2-binding site significantly reduced Mmp20 promoter activity upon activation with MEF2C or TGF-ß1. In conclusion, TGF-ß1-induced Mmp20 expression in ALCs was regulated through the MEF2-binding site on the Mmp20 promoter and thus mediated by the MEF2C signaling pathway.


Assuntos
Ameloblastos/metabolismo , Metaloproteinase 20 da Matriz/genética , Transcrição Gênica/genética , Fator de Crescimento Transformador beta1/genética , Ameloblastos/enzimologia , Amelogênese/genética , Animais , Pareamento de Bases/genética , Linhagem Celular , Linhagem da Célula , Regulação Enzimológica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Genes Reporter/genética , Células HEK293 , Humanos , Fatores de Transcrição MEF2/genética , Camundongos , Mutação/genética , Proteínas Nucleares/análise , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transfecção
3.
Histochem Cell Biol ; 140(4): 443-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23982811

RESUMO

Patients with mild forms of peroxisomal biogenesis disorders show facial dysmorphism and exhibit dentition problems accompanied by enamel hypoplasia. However, no information is available on the role of peroxisomes in dental and paradontal tissues. Therefore, we studied the distribution of these organelles, their protein composition and the expression of corresponding genes during dental development and in mature decalcified teeth in mice. Perfusion-fixed heads of mice of different developmental stages (E13.5 to adult) were cut in sagittal direction into two halves and embedded in paraffin for serial sectioning and subsequent peroxidase-based immunohistochemistry or double-immunofluorescence preparations. Frozen, unfixed heads of newborn mice were used for cryosectioning and subsequent laser-assisted microdissection of ameloblasts and odontoblasts, RNA isolation and RT-PCR analysis. Our results revealed the presence of peroxisomes already in the bud stage of dental development. An increase in peroxisome abundance was noted during differentiation of ameloblasts and odontoblasts with the highest number of organelles in Tomes' processes of mature ameloblasts. A strong heterogeneity of peroxisomal enzyme content developed within differentiated dental cell types. A drastic down-regulation of catalase in maturing ameloblasts was noted in contrast to high levels of lipid metabolizing enzymes in peroxisomes of these cells. As known from the literature, differentiated ameloblasts are more prone to oxidative damage which could be explained by the low catalase levels inside of this cell type.


Assuntos
Peroxissomos/metabolismo , Dente/citologia , Ameloblastos/citologia , Ameloblastos/enzimologia , Animais , Catalase/metabolismo , Diferenciação Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Odontoblastos/citologia , Odontoblastos/enzimologia , Peroxissomos/enzimologia , Dente/enzimologia
4.
Dev Growth Differ ; 55(5): 615-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23713787

RESUMO

Apoptosis during tooth development appears dependent on the apoptotic executioner caspase-3, but not caspase-7. Instead, activated caspase-7 has been found in differentiated odontoblasts and ameloblasts, where it does not correlate with apoptosis. To further investigate these findings, the mouse incisor was used as a model. Analysis of caspase-7-deficient mice revealed a significant thinner layer of hard tissue in the adult incisor. Micro computed tomography scan confirmed this decrease in mineralized tissues. These data strongly suggest that caspase-7 might be directly involved in functional cell differentiation and regulation of the mineralization of dental matrices.


Assuntos
Ameloblastos/enzimologia , Caspase 7/metabolismo , Diferenciação Celular , Odontoblastos/enzimologia , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Caspase 7/genética , Proliferação de Células , Esmalte Dentário/embriologia , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/metabolismo , Imuno-Histoquímica , Incisivo/embriologia , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odontoblastos/citologia , Odontoblastos/metabolismo , Odontogênese , Fatores de Tempo , Microtomografia por Raio-X
5.
J Cell Physiol ; 226(10): 2527-34, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21792909

RESUMO

During tooth development, inner enamel epithelial (IEE) cells differentiate into enamel-secreting ameloblasts, a polarized and elongated cellular population. The molecular underpinnings of this morphogenesis and cytodifferentiation, however, are not well understood. Here, we show that Rho-associated coiled-coil-containing protein kinase (ROCK) regulates ameloblast differentiation and enamel formation. In mouse incisor organ cultures, inhibition of ROCK, hindered IEE cell elongation and disrupted polarization of differentiated ameloblasts. Expression of enamel matrix proteins, such as amelogenin and ameloblastin, and formation of the terminal band structure of actin and E-cadherin were also perturbed. Cultures of dental epithelial cells revealed that ROCK regulates cell morphology and cell adhesion through localization of actin bundles, E-cadherin, and ß-catenin to cell membranes. Moreover, inhibition of ROCK promoted cell proliferation. Small interfering RNA specific for ROCK1 and ROCK2 demonstrated that the ROCK isoforms performed complementary functions in the regulation of actin organization and E-cadherin-mediated cell-cell adhesion. Thus, our results have uncovered a novel role for ROCK in amelogenesis.


Assuntos
Ameloblastos/enzimologia , Diferenciação Celular/fisiologia , Quinases Associadas a rho/fisiologia , Ameloblastos/citologia , Amelogênese/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Incisivo/citologia , Incisivo/enzimologia , Incisivo/fisiologia , Camundongos , Técnicas de Cultura de Órgãos , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética
6.
Eur J Oral Sci ; 119 Suppl 1: 226-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243250

RESUMO

Kallikrein-related peptidase 4 (KLK4) is critical for proper dental enamel formation. Klk4 null mice, and humans with two defective KLK4 alleles have obvious enamel defects, with no other apparent phenotype. KLK4 mRNA or protein is reported to be present in tissues besides teeth, including prostate, ovary, kidney, liver, and salivary gland. In this study we used the Klk4 knockout/NLS-lacZ knockin mouse to assay Klk4 expression using ß-galactosidase histochemistry. Incubations for 5 h were used to detect KLK4 expression with minimal endogenous background, while overnight incubations susceptible to false positives were used to look for trace KLK4 expression. Developing maxillary molars at postnatal days 5, 6, 7, 8, and 14, developing mandibular incisors at postnatal day 14, and selected non-dental tissues from adult wild-type and Klk4(lacZ/lacZ) mice were examined by X-gal histochemistry. After 5 h of incubation, X-gal staining was observed specifically in the nuclei of maturation-stage ameloblasts in molars and incisors from Klk4(lacZ/lacZ) mice and was detected weakly in the nuclei of salivary gland ducts and in patches of prostate epithelia. We conclude that KLK4 is predominantly a tooth-specific protease with low expression in submandibular salivary gland and prostate, and with no detectable expression in liver, kidney, testis, ovary, oviduct, epididymis, and vas deferens.


Assuntos
Ameloblastos/enzimologia , Esmalte Dentário/enzimologia , Calicreínas/biossíntese , Próstata/enzimologia , Glândula Submandibular/enzimologia , Amelogênese , Animais , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Calicreínas/análise , Calicreínas/genética , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos , beta-Galactosidase/genética
7.
Eur J Oral Sci ; 119 Suppl 1: 247-53, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243253

RESUMO

Dental enamel is a hypermineralized tissue, containing only trace amounts of organic components. During enamel formation, matrix metalloproteinase 20 (MMP20) processes proteins comprising enamel matrix and facilitates hypermineralization. In the human genome, 24 distinct MMP genes have been identified. Among these genes, MMP20 is clustered with eight other genes, including MMP13, and all these clustered genes show phylogenetically close relationships. In this study, we investigated MMP20 and closely related MMP genes in various tetrapods and in a teleost fish, fugu. In the genome of the chicken, a toothless tetrapod, we identified degraded exons of MMP20, which supports the previous proposition that MMP20 is important specifically for enamel formation. Nevertheless, for unknown reasons, we failed to identify MMP20 in the platypus genome. In the opossum, lizard, and frog genomes, MMP20 was found clustered with MMP13. Furthermore, in the fugu genome, we identified an MMP20-like gene located adjacent to MMP13, suggesting that MMP20 arose before the divergence of ray-finned fish and lobe-finned fish. The teleost tooth surface is covered with enameloid, a hypermineralized tissue different from enamel. Thus, we hypothesize that MMP20 could have been used in an ancient hypermineralized tissue, which evolved into enameloid in teleosts and into enamel in tetrapods.


Assuntos
Esmalte Dentário/enzimologia , Evolução Molecular , Metaloproteinase 20 da Matriz/química , Metaloproteinase 20 da Matriz/genética , Takifugu/genética , Ameloblastos/enzimologia , Amelogênese , Animais , Cromossomos Humanos Par 11/genética , Proteínas do Esmalte Dentário/genética , Hemopexina/química , Humanos , Família Multigênica/genética , Filogenia , Vertebrados/genética
8.
Eur J Oral Sci ; 119 Suppl 1: 199-205, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243247

RESUMO

Mutations of the matrix metalloproteinase 20 (MMP20, enamelysin) gene cause autosomal-recessive amelogenesis imperfecta, and Mmp20 ablated mice also have malformed dental enamel. Here we showed that Mmp20 null mouse secretory-stage ameloblasts maintain a columnar shape and are present as a single layer of cells. However, the maturation-stage ameloblasts from null mouse cover extraneous nodules of ectopic calcified material formed at the enamel surface. Remarkably, nodule formation occurs in null mouse enamel when MMP20 is normally no longer expressed. The malformed enamel in Mmp20 null teeth was loosely attached to the dentin and the entire enamel layer tended to separate from the dentin, indicative of a faulty dentino-enamel junction (DEJ). The enamel rod pattern was also altered in Mmp20 null mice. Each enamel rod is formed by a single ameloblast and is a mineralized record of the migration path of the ameloblast that formed it. The enamel rods in Mmp20 null mice were grossly malformed or absent, indicating that the ameloblasts do not migrate properly when backing away from the DEJ. Thus, MMP20 is required for ameloblast cell movement necessary to form the decussating enamel rod patterns, for the prevention of ectopic mineral formation, and to maintain a functional DEJ.


Assuntos
Ameloblastos/enzimologia , Amelogênese/genética , Esmalte Dentário/anormalidades , Esmalte Dentário/ultraestrutura , Dentina/anatomia & histologia , Metaloproteinase 20 da Matriz/genética , Metaloproteinase 20 da Matriz/fisiologia , Ameloblastos/citologia , Ameloblastos/fisiologia , Animais , Calcinose/genética , Movimento Celular , Esmalte Dentário/enzimologia , Órgão do Esmalte/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Calcificação de Dente/genética
9.
Eur J Oral Sci ; 119 Suppl 1: 217-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243249

RESUMO

The crowns of matrix metalloproteinase 20 (Mmp20) null mice fracture at the dentino-enamel junction (DEJ), whereas the crowns of kallikrein-related peptidase 4 (Klk4) null mice fracture in the deep enamel just above the DEJ. We used backscatter scanning electron microscopy to assess enamel mineralization in incisors from 9-wk-old wild-type, Klk4 null, and Mmp20 null mice, and in developing pig molars. We observed a line of hypermineralization along the DEJ in developing wild-type mouse and pig teeth. This line was discernible from the early secretory stage until the enamel in the maturation stage reached a similar density. The line was apparent in Klk4 null mice, but absent in Mmp20 null mice. Enamel in the Klk4 null mice matured normally at the surface, but was progressively less mineralized with depth. Enamel in the Mmp20 null mice formed as a mineral bilayer, with neither layer looking like true enamel. The most superficial mineral layer expanded during the maturation stage and formed irregular surface nodules. A surprising finding was the observation of electron backscatter from mid-maturation wild-type ameloblasts, which we attributed to the accumulation and release of iron. We conclude that enamel breaks in the deep enamel of Klk4 null mice because of decreasing enamel maturation with depth, and at the DEJ in Mmp20 null mice because of hypomineralization at the DEJ.


Assuntos
Amelogênese/fisiologia , Hipoplasia do Esmalte Dentário/genética , Esmalte Dentário/enzimologia , Esmalte Dentário/crescimento & desenvolvimento , Calicreínas/fisiologia , Metaloproteinase 20 da Matriz/fisiologia , Adolescente , Ameloblastos/enzimologia , Animais , Fosfatos de Cálcio/análise , Esmalte Dentário/ultraestrutura , Proteínas do Esmalte Dentário/análise , Proteínas do Esmalte Dentário/metabolismo , Humanos , Ferro/análise , Calicreínas/genética , Metaloproteinase 20 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura , Espalhamento de Radiação , Espectrometria por Raios X , Sus scrofa , Calcificação de Dente/fisiologia
10.
Eur J Oral Sci ; 119 Suppl 1: 206-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243248

RESUMO

Matrix metalloproteinase 20 (MMP20) and kallikrein-related peptidase 4 (KLK4) are thought to be necessary to clear proteins from the enamel matrix of developing teeth. We characterized Mmp20 and Klk4 null mice to better understand their roles in matrix degradation and removal. Histological examination showed retained organic matrix in Mmp20, Klk4, and Mmp20/Klk4 double-null mouse enamel matrix, but not in the wild-type. X-gal histostaining of Mmp20 null mice heterozygous for the Klk4 knockout/lacZ knockin showed that Klk4 is expressed normally in the Mmp20 null background. This finding was corroborated by zymogram and western blotting, which discovered a 40-kDa protease induced in the maturation stage of Mmp20 null mice. Proteins were extracted from secretory-stage or maturation-stage maxillary first molars from wild-type, Mmp20 null, Klk4 null, and Mmp20/Klk4 double-null mice and were analyzed by SDS-PAGE and western blotting. Only intact amelogenins and ameloblastin were observed in secretory-stage enamel of Mmp20 null mice, whereas the secretory-stage matrix from Klk4 null mice was identical to the matrix from wild-type mice. More residual matrix was observed in the double-null mice compared with either of the single-null mice. These results support the importance of MMP20 during the secretory stage and of KLK4 during the maturation stage and show there is only limited functional redundancy for these enzymes.


Assuntos
Amelogênese/fisiologia , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/enzimologia , Calicreínas/fisiologia , Metaloproteinase 20 da Matriz/fisiologia , Ameloblastos/enzimologia , Amelogênese/genética , Amelogenina/metabolismo , Animais , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/isolamento & purificação , Matriz Extracelular/metabolismo , Técnicas de Inativação de Genes , Genótipo , Calicreínas/biossíntese , Calicreínas/genética , Metaloproteinase 20 da Matriz/biossíntese , Metaloproteinase 20 da Matriz/genética , Metaloproteinase 20 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo Hidrolases/metabolismo , Proteólise
11.
Am J Physiol Cell Physiol ; 299(6): C1299-307, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20844245

RESUMO

Mature enamel consists of densely packed and highly organized large hydroxyapatite crystals. The molecular machinery responsible for the formation of fully matured enamel is poorly described but appears to involve oscillative pH changes at the enamel surface. We conducted an immunohistochemical investigation of selected transporters and related proteins in the multilayered rat incisor enamel organ. Connexin 43 (Cx-43) is found in papillary cells and ameloblasts, whereas Na(+)-K(+)-ATPase is heavily expressed during maturation in the papillary cell layer only. Given the distribution of Cx-43 channels and Na(+)-K(+)-ATPase, we suggest that ameloblasts and the papillary cell layer act as a functional syncytium. During enamel maturation ameloblasts undergo repetitive cycles of modulation between ruffle-ended (RA) and smooth-ended (SA) ameloblast morphologies. Carbonic anhydrase II and vacuolar H(+)-ATPase are expressed simultaneously at the beginning of the maturation stage in RA cells. The proton pumps are present in the ruffled border of RA and appear to be internalized during the SA stage. Both papillary cells and ameloblasts express plasma membrane acid/base transporters (AE2, NBC, and NHE1). AE2 and NHE1 change position relative to the enamel surface as localization of the tight junctions changes during ameloblast modulation cycles. We suggest that the concerted action of the papillary cell layer and the modulating ameloblasts regulates the enamel microenvironment, resulting in oscillating pH fluctuations. The pH fluctuations at the enamel surface may be required to keep intercrystalline spaces open in the surface layers of the enamel, enabling degraded enamel matrix proteins to be removed while hydroxyapatite crystals grow as a result of influx of calcium and phosphate ions.


Assuntos
Ameloblastos/enzimologia , Amelogênese , Esmalte Dentário/enzimologia , Ameloblastos/citologia , Animais , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Anidrase Carbônica II/metabolismo , Conexina 43/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Masculino , Bombas de Próton/metabolismo , Ratos , Ratos Wistar , Proteínas SLC4A , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
J Cell Physiol ; 225(3): 709-19, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20533306

RESUMO

Differentiation of ameloblasts from undifferentiated epithelial cells is controlled by diverse growth factors, as well as interactions between epithelium and mesenchyme. However, there is a considerable lack of knowledge regarding the precise mechanisms that control ameloblast differentiation and enamel biomineralization. We found that the expression level of carbonic anhydrase II (CAII) is strongly up-regulated in parallel with differentiation of enamel epithelium tissues, while the enzyme activity of CA was also increased along with differentiation in ameloblast primary cultures. The expression level of amelogenin, a marker of secretory-stage ameloblasts, was enhanced by ethoxzolamide (EZA), a CA inhibitor, as well as CAII antisense (CAIIAS), whereas the expression of enamel matrix serine proteinase-1 (EMSP-1), a marker for maturation-stage ameloblasts, was suppressed by both. These agents also promoted ameloblast proliferation. In addition, inhibition of ameloblast differentiation by EZA and CAIIAS was confirmed using tooth germ organ cultures. Furthermore, EZA and CAIIAS elevated intracellular pH in ameloblasts, while experimental decreases in intracellular pH abolished the effect of CAIIAS on ameloblasts and triggered the activation of c-Jun N-terminal kinase (JNK). SP600125, a JNK inhibitor, abrogated the response of ameloblasts to an experimental decrease in intracellular pH, while the inhibition of JNK also impaired ameloblast differentiation. These results suggest a novel role for CAII during amelogenesis, that is, controlling the differentiation of ameloblasts. Regulation of intracellular pH, followed by activation of the JNK signaling pathway, may be responsible for the effects of CAII on ameloblasts.


Assuntos
Ameloblastos/enzimologia , Anidrase Carbônica II/metabolismo , Diferenciação Celular , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Germe de Dente/enzimologia , Ameloblastos/efeitos dos fármacos , Amelogenina/metabolismo , Animais , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/genética , Inibidores da Anidrase Carbônica/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Calicreínas/metabolismo , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Técnicas de Cultura de Órgãos , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Germe de Dente/citologia , Germe de Dente/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 393(4): 883-7, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20175995

RESUMO

Enamel formation requires rigid control of pH homeostasis during all stages of development to prevent disruptions to crystal growth. The acceleration of the generation of bicarbonate by carbonic anhydrases (CA) has been suggested as one of the pathways used by ameloblasts cells to regulate extracellular pH yet only two isozymes (CA II and CA VI) have been reported to date during enamel formation. The mammalian CA family contains 16 different isoforms of which 13 are enzymatically active. We have conducted a systematic screening by RT-PCR on the expression of all known CA isoforms in mouse enamel organ epithelium (EOE) cells dissected from new born, in secretory ameloblasts derived from 7-day-old animals, and in the LS8 ameloblast cell line. Results show that all CA isoforms are expressed by EOE/ameloblast cells in vivo. The most highly expressed are the catalytic isozymes CA II, VI, IX, and XIII, and the acatalytic CA XI isoform. Only minor differences were found in CA expression levels between 1-day EOE cells and 7-day-old secretory-stage ameloblasts, whereas LS8 cells expressed fewer CA isoforms than both of these. The broad expression of CAs by ameloblasts reported here contributes to our understanding of pH homeostasis during enamel development and demonstrates its complexity. Our results also highlight the critical role that regulation of pH plays during the development of enamel.


Assuntos
Ameloblastos/enzimologia , Amelogênese , Anidrases Carbônicas/biossíntese , Órgão do Esmalte/enzimologia , RNA Mensageiro/biossíntese , Animais , Linhagem Celular , Órgão do Esmalte/embriologia , Isoenzimas/biossíntese , Camundongos , Camundongos Endogâmicos
14.
Cell Tissue Res ; 340(3): 459-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20387077

RESUMO

Morphogenesis and cytodifferentiation are distinct processes in tooth development. Cell proliferation predominates in morphogenesis; differentiation involves changes in form and gene expression. The cytoskeleton is essential for both processes, being regulated by Rho GTPases. The aim of this study was to verify the expression, distribution, and role of Rho GTPases in ameloblasts and odontoblasts during tooth development in correlation with actin and tubulin arrangements and amelogenin and dentin sialophosphoprotein (DSPP) expression. RhoA, Rac1, and Cdc42 were strongly expressed during morphogenesis; during cytodifferentiation, RhoA was present in ameloblasts and odontoblasts, Rac1 and its effector Pak3 were observed in ameloblasts; and Cdc42 was present in all cells of the tooth germ and mesenchyme. The expression of RhoA mRNA and its effectors RockI and RockII, Rac1 and Pak3, as analyzed by real-time polymerase chain reaction, increased after ameloblast and odontoblast differentiation, according to the mRNA expression of amelogenin and DSPP. The inhibition of all Rho GTPases by Clostridium difficile toxin A completely abolished amelogenin and DSPP expression in tooth germs cultured in anterior eye chamber, whereas the specific inhibition of the Rocks showed only a partial effect. Thus, both GTPases are important during tooth morphogenesis. During cytodifferentiation, Rho proteins are essential for the complete differentiation of ameloblasts and odontoblasts by regulating the expression of amelogenin and DSPP. RhoA and its effector RockI contribute to this role. A specific function for Rac1 in ameloblasts remains to be elucidated; its punctate distribution indicates its possible role in exocytosis/endocytosis.


Assuntos
Ameloblastos/citologia , Amelogenina/metabolismo , Diferenciação Celular , Proteínas da Matriz Extracelular/metabolismo , Odontoblastos/citologia , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Ameloblastos/enzimologia , Amelogenina/genética , Animais , Diferenciação Celular/genética , Proteínas da Matriz Extracelular/genética , Imunofluorescência , Regulação Enzimológica da Expressão Gênica , Odontoblastos/enzimologia , Fosfoproteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sialoglicoproteínas/genética , Dente/citologia , Dente/enzimologia , Dente/crescimento & desenvolvimento , Germe de Dente/citologia , Germe de Dente/enzimologia , Germe de Dente/crescimento & desenvolvimento , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética
15.
Arch Oral Biol ; 109: 104579, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31634727

RESUMO

OBJECTIVES: To investigate the effect and mechanism of calcium on LS8 cell differentiation, especially on phosphatidylinositol 3 kinase (PI3K) /protein kinase B(AKT) pathway. MATERIALS AND METHODS: Ameloblast-like LS8 cell line was used and additional 0-3.5 mmol/L calcium chloride was treated for 24 h, 48 h. Cell viability and morphological changes, cell cycle and associated regulatory proteins were analyzed. RESULTS: No significant effects on morphological changes were observed. Decreased cell viability and increased S phase cells were accompanied by the significant decrease of cyclin A and cyclin B proteins, and significant increase of cyclin D protein in LS8 cells. Additionally, kallikrein-4 and amelotin expressions were significantly increased. Finally, the levels of PI3K, AKT, p-AKT and forkhead box O3 (FOXO3) significantly downregulated after calcium treatment in LS8 cells. CONCLUSIONS: Calcium inhibit proliferation and promotes differentiation in LS8 cells, this is closely related to the downregulation of PI3K/AKT signal in LS8 cells.


Assuntos
Ameloblastos/enzimologia , Cálcio/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ameloblastos/efeitos dos fármacos , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Camundongos
16.
Cells Tissues Organs ; 189(1-4): 111-4, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18703868

RESUMO

The enamel matrix proteins (amelogenin, enamelin and ameloblastin) are degraded by matrix metalloproteinase-20 and kallikrein-4 during enamel development and mature enamel is virtually protein free. The precise mechanism of removal and degradation of the enamel protein cleavage products from the matrix, however, remains poorly understood. It has been proposed that receptor-mediated endocytosis allows for the cleaved proteins to be removed from the matrix during enamel formation and then transported to the lysosome for further degradation. This study aims to identify lysosomal proteases that are present in maturation-stage enamel organ. RNA from first molars of 11-day-old mice was collected and expression was initially assessed by RT-PCR and then quantified by qPCR. The pattern of expression of selected proteases was assessed by immunohistochemical staining of demineralized mouse incisors. With the exception of cathepsin G, all lysosomal proteases assessed were expressed in maturation-stage enamel organ. Identified proteases included cathepsins B, D, F, H, K, L, O, S and Z. Tripeptidyl peptidases I and II as well as dipeptidyl peptidases I, II, III and IV were also found to be expressed. Immunohistochemical staining confirmed that the maturation-stage ameloblasts express cathepsins L and S and tripeptidyl peptidase II. Our results suggest that the ameloblasts are enriched by a large number of lysosomal proteases at maturation that are likely involved in the degradation of the organic matrix.


Assuntos
Órgão do Esmalte/enzimologia , Lisossomos/enzimologia , Peptídeo Hidrolases/metabolismo , Ameloblastos/citologia , Ameloblastos/enzimologia , Animais , Diferenciação Celular , Órgão do Esmalte/citologia , Regulação Enzimológica da Expressão Gênica , Imuno-Histoquímica , Camundongos , Peptídeo Hidrolases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Dent Res ; 97(7): 820-827, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29481294

RESUMO

Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20+/+Tg+) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20+/+Tg+ mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted ß-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the ß-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20+/+Tg+ molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20+/+Tg+ mouse molar enamel organs had increased levels of inactive p-cofilin, a protein that regulates cell polarity. These data demonstrate that increased MMP20 activity in molars causes premature degradation of ameloblastin and inactivation of cofilin, which may contribute to pathological Wnt-mediated cell migration away from the enamel layer.


Assuntos
Ameloblastos/enzimologia , Amelogênese/fisiologia , Metaloproteinase 20 da Matriz/metabolismo , Dente Molar/enzimologia , Fatores de Despolimerização de Actina/metabolismo , Amelogenina/metabolismo , Animais , Animais Recém-Nascidos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Movimento Celular , Proteínas do Esmalte Dentário/metabolismo , Immunoblotting , Camundongos , Camundongos Transgênicos , Pirimidinonas/farmacologia , Via de Sinalização Wnt , Microtomografia por Raio-X
18.
Chem Biol Interact ; 261: 27-34, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27871895

RESUMO

Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by orally administration for 5 weeks; ameloblasts were treated with NaF (5 mM) and/or LYC (2 µM) for 6 h. We found that the concentrations of fluoride, malondialdehyde (MDA) and reactive oxygen species (ROS), gene expressions and activities of Caspase-9 and Caspase-3, and the gene expressions of Bax were significantly decreased, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX), the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated rats group; concentrations of MDA and ROS, gene expressions and activities of Caspase-9 and Caspase-3, and the gene expression of Bax, and ameloblasts apoptosis rate were significantly decreased, while the activities of SOD and GPX, the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated ameloblasts group. These results suggest that LYC significantly combated NaF-induced ameloblasts apoptosis and dental fluorosis by attenuation oxidative stress and down-regulation Caspase pathway.


Assuntos
Ameloblastos/patologia , Apoptose/efeitos dos fármacos , Carotenoides/farmacologia , Caspases/metabolismo , Fluorose Dentária/patologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Fluoreto de Sódio/toxicidade , Ameloblastos/efeitos dos fármacos , Ameloblastos/enzimologia , Animais , Caspases/genética , Regulação para Baixo/efeitos dos fármacos , Fluorose Dentária/enzimologia , Glutationa Peroxidase/metabolismo , Incisivo/efeitos dos fármacos , Licopeno , Masculino , Malondialdeído/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
19.
J Dent Res ; 84(3): 234-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723862

RESUMO

Protein kinase C (PKC) is an important molecule involved in various cell function, and mediates induced secretion of vascular endothelial growth factor (VEGF). It is hypothesized that PKC and VEGF may be associated with tooth development. Using the laser microdissection method and real-time reverse-transcription-polymerase chain-reaction (RT-PCR), we investigated the expression of PKC betaI and betaII, VEGF, and amelogenin (used as a marker of differentiation to ameloblasts) in the inner and outer enamel epithelia, stellate reticulum, and dental papilla in each stage of the dental germ. We found that the expression levels of PKC betaI and betaII were increased in the inner enamel epithelium during the early bell stage. In addition, the increased expression levels of PKC betaI and betaII were accompanied by increased VEGF expression. These results indicate that PKC betaI, betaII, and VEGF are closely associated with the differentiation of the inner enamel epithelium to ameloblasts.


Assuntos
Órgão do Esmalte/citologia , Isoenzimas/análise , Odontogênese/fisiologia , Proteína Quinase C/análise , Fator A de Crescimento do Endotélio Vascular/análise , Ameloblastos/citologia , Ameloblastos/enzimologia , Amelogenina , Animais , Diferenciação Celular , Proteínas do Esmalte Dentário/análise , Papila Dentária/citologia , Papila Dentária/enzimologia , Órgão do Esmalte/enzimologia , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Regulação Enzimológica da Expressão Gênica , Lasers , Microdissecção , Proteína Quinase C beta , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Germe de Dente/citologia , Germe de Dente/enzimologia
20.
Arch Oral Biol ; 50(2): 175-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15721147

RESUMO

In previous studies, hyaluronan (HA) and its major cell surface receptor CD44 have been suggested to play an important role during tooth development. HA synthases (HASs) are the enzymes that polymerize hyaluronan. Data on the expression pattern of HASs during tooth development is lacking and the aim of the present study was to investigate the localisation of HAS by immunohistochemistry in human tooth germs from different developmental stages. The distribution pattern of HAS in the various tissues of the "bell stage" tooth primordia corresponded to that of hyaluronan in most locations: positive HAS immunoreactivity was observed in the dental lamina cells, inner- and outer-enamel epithelium. On the stellate reticulum cells, moderate HAS signal was observed, similar to the layers of the oral epithelium, where faint HAS immunoreactivity was detected. At the early phase of dental hard tissues mineralization, strong HAS immunoreactivity was detected in the odontoblasts and their processes, as well as in the secretory ameloblasts and their apical processes and also, the pulpal mesenchymal cells. The HAS signals observed in odontoblasts and ameloblasts gradually decreased with age. Our results demonstrate that hyaluronan synthesised locally by different dental cells and these results provide additional indirect support to the suggestion that HA may contribute both to the regulation of tooth morphogenesis and dental hard tissue formation.


Assuntos
Glucuronosiltransferase/análise , Odontogênese/fisiologia , Germe de Dente/química , Ameloblastos/química , Ameloblastos/enzimologia , Feminino , Humanos , Hialuronan Sintases , Ácido Hialurônico/análise , Imuno-Histoquímica/métodos , Mucosa Bucal/química , Mucosa Bucal/embriologia , Odontoblastos/química , Odontoblastos/enzimologia , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Germe de Dente/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA