Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
BMC Plant Biol ; 24(1): 590, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902595

RESUMO

BACKGROUND: The Prunus sibirica seeds with rich oils has great utilization, but contain amygdalin that can be hydrolyzed to release toxic HCN. Thus, how to effectively reduce seed amygdalin content of P. sibirica is an interesting question. Mandelonitrile is known as one key intermediate of amygdalin metabolism, but which mandelonitrile lyase (MDL) family member essential for its dissociation destined to low amygdalin accumulation in P. sibirica seeds still remains enigmatic. An integration of our recent 454 RNA-seq data, amygdalin and mandelonitrile content detection, qRT-PCR analysis and function determination is described as a critical attempt to determine key MDL and to highlight its function in governing mandelonitrile catabolism with low amygdalin accumulation in Prunus sibirica seeds for better developing edible oil and biodiesel in China. RESULTS: To identify key MDL and to unravel its function in governing seed mandelonitrile catabolism with low amygdalin accumulation in P. sibirica. Global identification of mandelonitrile catabolism-associated MDLs, integrated with the across-accessions/developing stages association of accumulative amount of amygdalin and mandelonitrile with transcriptional level of MDLs was performed on P. sibirica seeds of 5 accessions to determine crucial MDL2 for seed mandelonitrile catabolism of P. sibirica. MDL2 gene was cloned from the seeds of P. sibirica, and yeast eukaryotic expression revealed an ability of MDL2 to specifically catalyze the dissociation of mandelonitrile with the ideal values of Km (0.22 mM) and Vmax (178.57 U/mg). A combination of overexpression and mutation was conducted in Arabidopsis. Overexpression of PsMDL2 decreased seed mandelonitrile content with an increase of oil accumulation, upregulated transcript of mandelonitrile metabolic enzymes and oil synthesis enzymes (involving FA biosynthesis and TAG assembly), but exhibited an opposite situation in mdl2 mutant, revealing a role of PsMDL2-mediated regulation in seed amygdalin and oil biosynthesis. The PsMDL2 gene has shown as key molecular target for bioengineering high seed oil production with low amygdalin in oilseed plants. CONCLUSIONS: This work presents the first integrated assay of genome-wide identification of mandelonitrile catabolism-related MDLs and the comparative association of transcriptional level of MDLs with accumulative amount of amygdalin and mandelonitrile in the seeds across different germplasms and developmental periods of P. sibirica to determine MDL2 for mandelonitrile dissociation, and an effective combination of PsMDL2 expression and mutation, oil and mandelonitrile content detection and qRT-PCR assay was performed to unravel a mechanism of PsMDL2 for controlling amygdalin and oil production in P. sibirica seeds. These findings could offer new bioengineering strategy for high oil production with low amygdalin in oil plants.


Assuntos
Amigdalina , Prunus , Sementes , Amigdalina/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/enzimologia , Sementes/metabolismo , Sementes/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Óleos de Plantas/metabolismo , Aldeído Liases/metabolismo , Aldeído Liases/genética , Regulação da Expressão Gênica de Plantas
2.
Exp Eye Res ; 234: 109569, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422064

RESUMO

Oxidative stress has been involved in the pathogenesis of diabetic retinopathy (DR). Amygdalin is an effective component of bitter almond that exhibits excellent antioxidant properties. We explored the effects of amygdalin on ferroptosis and oxidative stress in high-glucose (HG)-stimulated human retinal endothelial cells (HRECs) via the NRF2/ARE pathway. HG-stimulated HRECs were used to establish a DR model. Cell viability was evaluated using the MTT assay. The release of lactate dehydrogenase was used to evaluate cell toxicity. The protein levels of NRF2, NQO1, and HO-1 were detected using western blotting. The GSH, GSSG, GPX4, SOD, CAT, MDA, and Fe2+ levels in the HRECs were also detected. Flow cytometry was used to detect reactive oxygen species (ROS) using a fluorescent probe. Immunofluorescence staining was performed to detect NRF2 expression. The results revealed that HG stimulation decreased the levels of GSH, GPX4, SOD, and CAT but increased those of MDA, ROS, GSSG, and Fe2+ in HRECs. Ferrostatin-1 treatment reversed the effects of HG stimulation, whereas erastin aggravated these effects. Amygdalin treatment relieved HG-induced injury in HRECs. Amygdalin treatment promoted the nuclear transport of NRF2 in HG-stimulated HRECs. NQO1 and HO-1 levels were upregulated in HG-stimulated HRECs after amygdalin treatment. An inhibitor of NRF2 reversed the effects of amygdalin. Therefore, amygdalin treatment inhibited ferroptosis and oxidative stress in HG-stimulated HRECs by activating the NRF2/ARE signaling pathway.


Assuntos
Amigdalina , Diabetes Mellitus , Retinopatia Diabética , Ferroptose , Humanos , Retinopatia Diabética/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Amigdalina/metabolismo , Amigdalina/farmacologia , Células Endoteliais/metabolismo , Dissulfeto de Glutationa/metabolismo , Estresse Oxidativo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Diabetes Mellitus/metabolismo
3.
Pulm Pharmacol Ther ; 81: 102230, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364767

RESUMO

Idiopathic pulmonary fibrosis (IPF) represents a chronic and progressive tissue repair response that leads to irreversible scarring and lung remodeling. The decoction of bitter almond usually contains amygdalin epimers in traditional clinical application for lung disease. To reveal the differences of cytotoxicity and antifibrotic effect between amygdalin epimers, and potential mechanism is also explored. The cytotoxicity of amygdalin epimers were evaluated with MRC-5 cells in vitro. Their antifibrotic activities were evaluated in bleomycin-induced C57BL/6 mice and TGF-ß1-induced MRC-5 cells. Here we demonstrated that L-amygdalin is more toxic of the amygdalin epimers in MRC-5 cells, and D-amygdalin is more effective in anti-pulmonary fibrosis among the amygdalin epimers in bleomycin-induced C57BL/6 mice. Herein, it was observed that D-amygdalin had a stronger inhibitory effect on inflammation than L-amygdalin, and had similar results in inhibiting the mRNA and protein expression levels of fibrosis-related biomarkers. The mechanism of anti-pulmonary fibrosis showed that amygdalin epimers suppressing expression of phosphorylation of Smads2/3, which implying deactivation of the TGF-ß1induced Smads2/3 signal pathway. This study evaluates the amygdalin epimers cytotoxicity and antifibrotic effect, and its mechanisms were related to the TGF-ß1/Smads2/3 signal pathway. It provides a reference for clinical safety and effectiveness of amygdalin epimers.


Assuntos
Amigdalina , Fibrose Pulmonar Idiopática , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Amigdalina/efeitos adversos , Amigdalina/metabolismo , Camundongos Endogâmicos C57BL , Pulmão , Fibrose Pulmonar Idiopática/induzido quimicamente , Bleomicina/farmacologia
4.
Biochem Biophys Res Commun ; 602: 105-112, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35259588

RESUMO

Amygdalin is a natural compound from Bitter Apricot Seed which is reported to have anti-inflammatory activity. Acetaminophen (APAP) resulted in drug-induced liver injury is the main cause of acute liver failure (ALI) worldwide and only N-acetylcysteine is the accepted detoxification drug. However, there is no effective medicine to perfect the hepatocyte death and secondary inflammation injury. In this study, we aim to investigate the protective effect of Amygdalin in the APAP-induced acute liver failure mice model. We establish the ALI model via intraperitoneal APAP injection and mice were treated with Amygdalin with intraperitoneal injection. We detected liver enzyme and histological change to evaluate the liver injury. We measured oxidative damage markers and inflammatory cell infiltration of liver tissues. At last, we investigated the mechanism of Amygdalin on protecting hepatocytes. Results showed that Amygdalin reduced ALT/AST level and decreased necrotic area of liver tissue. In addition, Amygdalin reduced the count of MPO+(neutrophils) and F4/80+(macrophages) of the liver and inhibited IL-6, TNF-a, and IL-1b expression. Amygdalin reduced liver SOD and MDA levels and increased Nrf2/NQO1/HO1 protein expression. Moreover, Amygdalin reduced TUNEL+ and P-MLKL + staining cells in liver tissue. Mechanically, Amygdalin promoted phosphorylation of AKT and suppressed JNK/RIP3/MLKL signaling.


Assuntos
Amigdalina , Doença Hepática Induzida por Substâncias e Drogas , Falência Hepática Aguda , Acetaminofen/efeitos adversos , Amigdalina/metabolismo , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Hepatócitos/metabolismo , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/prevenção & controle , Camundongos , Estresse Oxidativo
5.
BMC Infect Dis ; 21(1): 56, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33435880

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection is a high-risk factor of hepatocellular carcinoma (HCC). Cellular immune responses are essential for HCC development, and the CD4+ and CD8+ T subtypes are identified as the primary anti-tumor immune cells. In the study, we investigated the effect and mechanism of amygdalin in the cellular immune response in HBV-related HCC and HCC progression. METHODS: The cell proliferation was examined by MTT analysis. Cells metastasis ability was detected by Invasion and migration assays. Quantification of apoptotic cells was performed with Flow cytometer assay. The protein levels of p-STAT3, STAT3, p-JAK2, JAK2, caspase-3, cleaved caspase-3 were detected by performing immunoblotting assays. RESULTS: We demonstrate that amygdalin treatment could rescue the HBV-T cell viability and IFN-γ and TNF-αproduction. In HBV-T cells, the MFI levels of CD8+ are lower than that in NC-T cells. Moreover, the phosphorylation levels of STAT3 and JAK2 are higher in HBV-T cells, compared to those in NC-T cells, and then reduced by amygdalin treatment. Co-culture with HBV-T cells could reduce IFN-γ and TNF-α, production while increase IL-6 and IL-10 production in HepG2.2.15 cells; these alterations could be partially reversed by amygdalin pretreatment. Finally, co-culture with HBV-T cells significantly promoted the cell viability, inhibited the apoptosis, and promoted the migration of HepG2.2.15 cells, and these alterations could be partially reversed by amygdalin treatment. CONCLUSION: Our findings provide a rationale for further studies on the functions and mechanism of amygdalin inhibiting HBV-related HCC cell proliferation, invasion, and migration via T cell-mediated tumor immunity.


Assuntos
Amigdalina/farmacologia , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/virologia , Progressão da Doença , Hepatite B/complicações , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/virologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Idoso , Amigdalina/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Células Hep G2 , Hepatite B/virologia , Vírus da Hepatite B/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T/metabolismo , Linfócitos T/virologia
6.
Pak J Pharm Sci ; 33(4): 1569-1575, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33583789

RESUMO

Paeoniflorin and amygdalin are two major active saponins constituents in some Chinese herbal formulas used for cardio-cerebrovascular diseases. However, their intestinal absorption property and metabolic characteristics have not been clarified. The aim of this work was to study the absorption property of Paeoniflorin and Amygdalin across Caco-2 cell monolayer and their metabolic characteristics on the activity of cytochrome P450 (CYP450) enzyme. The results showed that the transport amount of Paeoniflorin and Amygdalin was positively correlated with the time and concentrations, and the transport amount from AP side to BL side was higher than that from BL to AP. The absorptions of Paeoniflorin and Amygdalin were reduced by P-glycoprotein, which provided the pharmacokinetic basis for their clinical application. Furthermore, we demonstrated that Paeoniflorin and Amygdalin had obvious inhibiting effects on CYP2C9 and CYP2E1. The transports of Paeoniflorin and Amygdalin across Caco-2 cell monolayer model were deduced as the passive transport, which indicated that the present bioassay system was appropriate and reliable for the evaluation of the transport characteristics and metabolic characteristics of active ingredient groups in Bu-yang-huan-wu decoction. Moreover, this research method may also be suitable for the appropriate bioactivity and metabolic characteristics analysis of other plant extracts.


Assuntos
Amigdalina/metabolismo , Transporte Biológico/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Glucosídeos/metabolismo , Monoterpenos/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/metabolismo , Humanos , Absorção Intestinal/fisiologia , Taxa de Depuração Metabólica/fisiologia , Oxirredução , Saponinas/metabolismo
7.
Plant Physiol ; 178(3): 1096-1111, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297455

RESUMO

Almond (Prunus dulcis) is the principal Prunus species in which the consumed and thus commercially important part of the fruit is the kernel. As a result of continued selection, the vast majority of almonds have a nonbitter kernel. However, in the field, there are trees carrying bitter kernels, which are toxic to humans and, consequently, need to be removed. The toxicity of bitter almonds is caused by the accumulation of the cyanogenic diglucoside amygdalin, which releases toxic hydrogen cyanide upon hydrolysis. In this study, we identified and characterized the enzymes involved in the amygdalin biosynthetic pathway: PdCYP79D16 and PdCYP71AN24 as the cytochrome P450 (CYP) enzymes catalyzing phenylalanine-to-mandelonitrile conversion, PdUGT94AF3 as an additional monoglucosyl transferase (UGT) catalyzing prunasin formation, and PdUGT94AF1 and PdUGT94AF2 as the two enzymes catalyzing amygdalin formation from prunasin. This was accomplished by constructing a sequence database containing UGTs known, or predicted, to catalyze a ß(1→6)-O-glycosylation reaction and a Basic Local Alignment Search Tool search of the draft version of the almond genome versus these sequences. Functional characterization of candidate genes was achieved by transient expression in Nicotiana benthamiana Reverse transcription quantitative polymerase chain reaction demonstrated that the expression of PdCYP79D16 and PdCYP71AN24 was not detectable or only reached minute levels in the sweet almond genotype during fruit development, while it was high and consistent in the bitter genotype. Therefore, the basis for the sweet kernel phenotype is a lack of expression of the genes encoding the two CYPs catalyzing the first steps in amygdalin biosynthesis.


Assuntos
Amigdalina/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Prunus dulcis/enzimologia , Amigdalina/química , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica , Genótipo , Glucosídeos/química , Glucosídeos/metabolismo , Nitrilas/química , Nitrilas/metabolismo , Nozes , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus dulcis/química , Prunus dulcis/genética , Nicotiana/genética , Nicotiana/metabolismo
8.
Plant Physiol ; 178(3): 1081-1095, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297456

RESUMO

Cyanogenic glucosides are a class of specialized metabolites widespread in the plant kingdom. Cyanogenic glucosides are α-hydroxynitriles, and their hydrolysis releases toxic hydrogen cyanide, providing an effective chemical defense against herbivores. Eucalyptus cladocalyx is a cyanogenic tree, allocating up to 20% of leaf nitrogen to the biosynthesis of the cyanogenic monoglucoside, prunasin. Here, mass spectrometry analyses of E. cladocalyx tissues revealed spatial and ontogenetic variations in prunasin content, as well as the presence of the cyanogenic diglucoside amygdalin in flower buds and flowers. The identification and biochemical characterization of the prunasin biosynthetic enzymes revealed a unique enzyme configuration for prunasin production in E. cladocalyx This result indicates that a multifunctional cytochrome P450 (CYP), CYP79A125, catalyzes the initial conversion of l-phenylalanine into its corresponding aldoxime, phenylacetaldoxime; a function consistent with other members of the CYP79 family. In contrast to the single multifunctional CYP known from other plant species, the conversion of phenylacetaldoxime to the α-hydroxynitrile, mandelonitrile, is catalyzed by two distinct CYPs. CYP706C55 catalyzes the dehydration of phenylacetaldoxime, an unusual CYP reaction. The resulting phenylacetonitrile is subsequently hydroxylatedby CYP71B103 to form mandelonitrile. The final glucosylation step to yield prunasin is catalyzed by a UDP-glucosyltransferase, UGT85A59. Members of the CYP706 family have not been reported previously to participate in the biosynthesis of cyanogenic glucosides, and the pathway structure in E. cladocalyx represents an example of convergent evolution in the biosynthesis of cyanogenic glucosides in plants.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Eucalyptus/enzimologia , Glucosídeos/metabolismo , Nitrilas/metabolismo , Amigdalina/química , Amigdalina/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Eucalyptus/química , Eucalyptus/genética , Flores/química , Flores/enzimologia , Flores/genética , Glucosídeos/química , Nitrilas/química , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/química , Plântula/enzimologia , Plântula/genética
9.
Mol Biol Rep ; 46(2): 2059-2066, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30725348

RESUMO

Derived from rosaceous plant seed, amygdalin belongs to aromatic cyanogenic glycoside group, and its anticancer effects have been supported by mounting evidence. In this study, we objected to investigate amygdalin effect on two antiapoptotic genes (Survivin, XIAP) and two lncRNAs (GAS5, MALAT1) in human cancer cells (A549, MCF7, AGS). Employing RT-qPCR analysis, we compared the mRNA levels of the genes related to apoptosis in A549, MCF7, and AGS cancer cells between amygdalin-treated (24, 48 and 72 h) and un-treated groups. RNA was extracted from both cell groups and then cDNAs were synthesized. The changes in the gene expression levels were specified using ΔΔCt method. RT-qPCR analysis has revealed that the expression of Survivin, XIAP, GAS5 and MALAT1 in amygdala-treated cancer cells were significantly different, compared to the un-treated cells. However, these expressions were different depending on the treatment time. According to the results, amygdalin significantly inhibited the expression level of Survivin, and XIAP genes in treated via untreated group. Our findings suggest that amygdalin might have an anticancer effect due to the various gene expressions in A549, MCF7, and AGS human cancer cells, showing it's potential as a natural therapeutic anticancer drug.


Assuntos
Amigdalina/farmacologia , Survivina/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/efeitos dos fármacos , Células A549/efeitos dos fármacos , Amigdalina/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Survivina/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
10.
Plant Cell Physiol ; 58(12): 2057-2066, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036663

RESUMO

Despite the long-established importance of salicylic acid (SA) in plant stress responses and other biological processes, its biosynthetic pathways have not been fully characterized. The proposed synthesis of SA originates from chorismate by two distinct pathways: the isochorismate and phenylalanine (Phe) ammonia-lyase (PAL) pathways. Cyanogenesis is the process related to the release of hydrogen cyanide from endogenous cyanogenic glycosides (CNglcs), and it has been linked to plant plasticity improvement. To date, however, no relationship has been suggested between the two pathways. In this work, by metabolomics and biochemical approaches (including the use of [13C]-labeled compounds), we provide strong evidences showing that CNglcs turnover is involved, at least in part, in SA biosynthesis in peach plants under control and stress conditions. The main CNglcs in peach are prunasin and amygdalin, with mandelonitrile (MD), synthesized from phenylalanine, controlling their turnover. In peach plants MD is the intermediary molecule of the suggested new SA biosynthetic pathway and CNglcs turnover, regulating the biosynthesis of both amygdalin and SA. MD-treated peach plants displayed increased SA levels via benzoic acid (one of the SA precursors within the PAL pathway). MD also provided partial protection against Plum pox virus infection in peach seedlings. Thus, we propose a third pathway, an alternative to the PAL pathway, for SA synthesis in peach plants.


Assuntos
Acetonitrilas/metabolismo , Prunus persica/metabolismo , Ácido Salicílico/metabolismo , Acetonitrilas/farmacologia , Aldeído Liases/genética , Aldeído Liases/metabolismo , Amigdalina/metabolismo , Ácido Benzoico/metabolismo , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Glicosídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Metabolômica/métodos , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus Eruptivo da Ameixa/patogenicidade , Prunus persica/efeitos dos fármacos , Prunus persica/genética , Prunus persica/virologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico
11.
J Exp Biol ; 218(Pt 17): 2666-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113142

RESUMO

Glycosides are a major group of plant secondary compounds characterized by one or more sugars conjugated to a lipophilic, possibly toxic aglycone, which is released upon hydrolysis. We compared small intestinal homogenate hydrolysis activity of three rodent and two avian species against four substrates: amygdalin and sinigrin, two plant-derived glucosides, the sugar lactose, whose hydrolysis models some activity against flavonoid and isoflavonoid glucosides, and the disaccharide sugar maltose (from starch), used as a comparator. Three new findings extend our understanding of physiological processing of plant glucosides: (1) the capacity of passerine birds to hydrolyze plant glucosides seems relatively low, compared with rodents; (2) in this first test of vertebrates' enzymic capacity to hydrolyze glucosinolates, sinigrin hydrolytic capacity seems low; (3) in laboratory mice, hydrolytic activity against lactose resides on the enterocytes' apical membrane facing the intestinal lumen, but activity against amygdalin seems to reside inside enterocytes.


Assuntos
Glucosídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Intestino Delgado/metabolismo , Murinae/metabolismo , Passeriformes/metabolismo , Amigdalina/metabolismo , Animais , Enterócitos/metabolismo , Glucosinolatos/metabolismo , Hidrólise , Lactase-Florizina Hidrolase/metabolismo , Lactose/metabolismo , Maltose/metabolismo , Especificidade da Espécie , beta-Glucosidase/metabolismo
12.
J Appl Microbiol ; 118(2): 443-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421573

RESUMO

AIMS: Cyanogenic glycosides are phytotoxic secondary metabolites produced by some crop plants. The aim of this study was to identify lactic acid bacteria (LAB) capable of catabolizing amygdalin, a model cyanogenic glycoside, for use in the biodetoxification of amygdalin-containing foods and feeds. METHODS AND RESULTS: Amygdalin-catabolizing lactobacilli were characterized using a combination of cultivation-dependent and molecular assays. Lactobacillus paraplantarum and Lactobacillus plantarum grew robustly on amygdalin (Amg(+)), while other LAB species typically failed to catabolize amygdalin (Amg(-)). Interestingly, high concentrations of amygdalin and two of its metabolic derivatives (mandelonitrile and benzaldehyde) inhibited the growth of Lact. plantarum RENO 0093. The differential regulation of genes tentatively involved in cyanohydrin metabolism illustrated that the metabolism of amygdalin- and glucose-grown cultures also differed significantly. CONCLUSIONS: Amygdalin fermentation was a relatively uncommon phenotype among the LAB and generally limited to strains from the Lact. plantarum group. Phenotype microarrays (PM) enabled strain-level discrimination between closely related strains within a species and suggested that phenotypic differences might affect niche specialization. SIGNIFICANCE AND IMPACT OF THE STUDY: Amygdalin-degrading lactobacilli with practical application in the biodetoxification of amygdalin were characterized. These strains show potential for use as starter cultures to improve the safety of foods and feeds.


Assuntos
Amigdalina/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Lactobacillus plantarum/classificação , Lactobacillus plantarum/genética , Lactobacillus plantarum/crescimento & desenvolvimento , Nitrilas/metabolismo , Fenótipo
13.
Plant Physiol ; 158(4): 1916-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22353576

RESUMO

Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the ß-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet.


Assuntos
Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Prunus/enzimologia , Prunus/crescimento & desenvolvimento , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Amigdalina/metabolismo , Anticorpos/imunologia , Bioensaio , Western Blotting , Metabolismo dos Carboidratos , Cromatografia Líquida , Cotilédone/metabolismo , Eletroforese em Gel de Poliacrilamida , Etiquetas de Sequências Expressas , Frutas/citologia , Frutas/genética , Genes de Plantas/genética , Cianeto de Hidrogênio/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/imunologia , Isoenzimas/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Prunus/citologia , Prunus/genética , Sementes/enzimologia , Coloração e Rotulagem , Espectrometria de Massas em Tandem , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/imunologia
14.
Chemistry ; 19(43): 14451-7, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24123550

RESUMO

Indicator displacement assays (IDAs) represent an elegant approach in supramolecular analytical chemistry. Herein, we report a chemical biosensor for the selective detection of the cyanogenic glycoside amygdalin in aqueous solution. The hybrid sensor consists of the enzyme ß-glucosidase and a boronic acid appended viologen together with a fluorescent reporter dye. ß-Glucosidase degrades the cyanogenic glycoside amygdalin into hydrogen cyanide, glucose, and benzaldehyde. Only the released cyanide binds at the allosteric site of the receptor (boronic acid) thereby inducing changes in the affinity of a formerly bound fluorescent indicator dye at the other side of the receptor. Thus, the sensing probe performs as allosteric indicator displacement assay (AIDA) for cyanide in water. Interference studies with inorganic anions and glucose revealed that cyanide is solely responsible for the change in the fluorescent signal. DFT calculations on a model compound revealed a 1:1 binding ratio of the boronic acid and cyanide ion. The fluorescent enzyme assay for ß-glucosidase uses amygdalin as natural substrate and allows measuring Michaelis-Menten kinetics in microtiter plates. The allosteric indicator displacement assay (AIDA) probe can also be used to detect cyanide traces in commercial amygdalin samples.


Assuntos
Amigdalina/metabolismo , Cianetos/química , Glicosídeos/metabolismo , beta-Glucosidase/metabolismo , Regulação Alostérica , Amigdalina/química , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Ensaios Enzimáticos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Glicosídeos/química , Íons/química , Cinética , Especificidade por Substrato , Viologênios/química , Viologênios/metabolismo
15.
J AOAC Int ; 106(2): 457-463, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453858

RESUMO

BACKGROUND: Cyanogenic glycosides are secondary metabolites in plants. In almonds and apricot kernels, amygdalin is an abundant cyanogenic glycoside. Upon consumption, amygdalin is enzymatically metabolized into hydrogen cyanide. Depending on the number of kernels consumed and the amygdalin concentration, ingestion of amygdalin-containing kernels may result in adverse effects. To better understand the US marketplace, the development and validation of analytical methods to reliably measure amygdalin in apricot kernels and almonds is needed to support the collection of occurrence and consumption data in retail products. OBJECTIVE: The aim of this study was to develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitation of amygdalin in apricot kernels and almonds following the U.S. Food and Drug Administration (FDA). Foods Program Guidelines for the Validation of Chemical Methods, 3rd Edition. METHODS: Apricot kernels and almonds were cryogenically homogenized and extracted using methanol containing an internal standard (IS), geniposide, followed by filtration, dilution, and LC-MS/MS analysis. Matrix effects were minimized using dilution. Quantitation was achieved using an external, solvent-based calibration. RESULTS: The amygdalin response was linear (r2 > 0.99) over a range of 0.05-50 µg/mL. The recovery of amygdalin spiked at 10-10 000 µg/g in sweet apricot kernels, raw almond, and dry-roasted almond ranged from 90 to 107% with RSDs ≤6%. The method limit of detection and limit of quantitation was 0.8 and 2.5 ng/g, respectively. Amygdalin concentrations in 18 market samples ranged from 2 to 24 000 µg/g. Corresponding estimates of cyanide concentration ranged from 0.2 to 1420 µg/g. CONCLUSIONS: Method performance meets the acceptance criteria defined by FDA guidelines and is fit for purpose for the analysis of amygdalin in apricot kernels and almonds. HIGHLIGHTS: An LC-MS/MS method is developed for the quantification of amygdalin in apricot kernels and almonds.


Assuntos
Amigdalina , Prunus armeniaca , Prunus dulcis , Amigdalina/análise , Amigdalina/química , Amigdalina/metabolismo , Prunus armeniaca/química , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos
16.
Dent Med Probl ; 60(3): 473-481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815512

RESUMO

BACKGROUND: Radiotherapy is used as a treatment for head and neck cancers but increases the risk of salivary gland hypofunction. The management strategies include pharmacotherapies such as salivary substitutes and sialagogues which are largely temporary. In this study, we examine the regenerative potential of vitamin B17 to improve salivary gland function. OBJECTIVES: The present investigation aims to identify the effect of vitamin B17 (amygdaline) on the irradiated parotid salivary gland of albino rats. MATERIAL AND METHODS: Twenty-eight adult male albino rats were randomly divided into two groups subjected to irradiation procedure. Fourteen were in the control group, receiving a daily 5 mL saline by oral gavage (7 rats for 14 days and 7 rats for 30 days) while the other fourteen were treated with a daily dose of vitamin B17 (grounded apricot kernel; GAK) at 400 mg/kg in 5 mL of saline by oral gavage (7 rats for 14 days and 7 rats for 30 days). The parotid glands were dissected from the two groups at 14 and 30 days from the day of exposure to irradiation. The parotid gland sections were subjected to H&E stain, immunohistochemical localization of epidermal growth factor (EGF) and PCR using transforming growth factor beta 2 (TGF-ß2). RESULTS: The histological abnormalities corroborate with the immunohistochemical localization of EGF and the PCR results of TGF ß2, as their up-regulation in the control group demonstrate oxidative stresses and inflammation. The Treatment with GAK decreased oxidative stress and inflammation while promoting tissue regeneration. CONCLUSIONS: Vitamin B17 is a promising anti-inflammatory agent that boosts immunity, as the experimental group showed better histological architecture of the parotid gland than the other one.


Assuntos
Amigdalina , Prunus armeniaca , Ratos , Masculino , Animais , Amigdalina/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Ratos Wistar , Glândulas Salivares/metabolismo , Glândulas Salivares/efeitos da radiação , Inflamação/metabolismo
17.
Chem Biol Interact ; 369: 110235, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36457260

RESUMO

OBJECTIVE: Transforming growth factor-beta TGF-ß-induced epithelial-mesenchymal transition (EMT) in bronchial epithelial cells contributes to airway wall remodeling in asthma. This study aims to explore the role of amygdalin, an active ingredient in bitter almonds, in TGF-ß-induced EMT in bronchial epithelial cells and to elucidate the possible mechanisms underlying its biological effects. METHODS: An asthmatic mouse model was established through ovalbumin induction. Primary mouse bronchial epithelial cells and a human bronchial epithelial cell line were incubated with transforming growth factor-beta (TGF-ß) to induce EMT, whose phenotype of cells was evaluated by the expressions of EMT markers [alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin] and cell migration capacity. A co-immunoprecipitation assay was performed to assess the ubiquitination of heparanase (HPSE). RESULTS: In asthmatic model mice, amygdalin treatment relieved airway wall remodeling and decreased expressions of EMT markers (α-SMA and vimentin). In TGF-ß-treated bronchial epithelial cells, amygdalin treatment decreased the mRNA and protein levels of EMT markers (α-SMA, vimentin, and fibronectin) without impairing cell viability. Through the Swiss Target Prediction database, HPSE was screened as a candidate downstream target for amygdalin. HPSE overexpression further promoted TGF-ß-induced EMT while the HPSE inhibitor suppressed TGF-ß-induced EMT in bronchial epithelial cells. In addition, HPSE overexpression reversed the inhibitory effect of amygdalin on TGF-ß-induced EMT in bronchial epithelial cells. The following mechanism exploration revealed that amygdalin downregulated HPSE expression by enhancing ubiquitination. CONCLUSION: Our study showed that amygdalin inhibited TGF-ß-induced EMT in bronchial epithelial cells and found that the anti-EMT activity of amygdalin might be related to its regulatory effect on HPSE expression.


Assuntos
Amigdalina , Asma , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Vimentina/genética , Vimentina/metabolismo , Fibronectinas/metabolismo , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Amigdalina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal , Asma/tratamento farmacológico , Asma/metabolismo , Células Epiteliais/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
18.
Iran J Allergy Asthma Immunol ; 22(5): 430-439, 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38085145

RESUMO

Asthma, characterized by persistent inflammation and increased sensitivity of the airway, is the most common chronic condition among children. Novel, safe, and reliable treatment strategies are the focus of current research on pediatric asthma. Amygdalin, mainly present in bitter almonds, has anti-inflammatory and immunoregulatory potential, but its effect on asthma remains uninvestigated. Here, the impact of amygdalin on the thymic stromal lymphopoietin (TSLP)-dendritic cell (DC)-OX40L axis was investigated. A BALB/c mouse model for allergic asthma was established using the ovalbumin-sensitization method. Amygdalin treatment was administered between days 21 and 27 of the protocol. Cell numbers and hematoxylin and eosin (H&E) staining in bronchoalveolar lavage fluid (BALF) were used to observe the impact of amygdalin on airway inflammation. TSLP, IL-4, IL-5, IL-13, and IFN-γ concentrations were determined via Enzyme-linked immunosorbent assay (ELISA). TSLP, GATA-3, and T-bet proteins were measured using western blotting. Cell-surface receptor expression on DCs (MHC II, CD80, and CD86) was assessed via flow cytometry. OX40L mRNA and protein levels were detected using western blotting and qRT-PCR, respectively. Amygdalin treatment attenuated airway inflammation decreased BALF TSLP levels, inhibited DC maturation, restrained TSLP-induced DC surface marker expression (MHCII, CD80, and CD86), and further decreased OX40L levels in activated DCs. This occurred together with decreased Th2 cytokine levels (IL-4, IL-5, and IL-13) and GATA3 expression, whereas Th1 cytokine (IFN-γ) levels and T-bet expression increased. Amygdalin thus regulates the Th1/Th2 balance through the TSLP-DC-OX40L axis to participate in inflammation development in the airways, providing a basis for potential allergic asthma treatments.


Assuntos
Amigdalina , Asma , Camundongos , Animais , Criança , Humanos , Linfopoietina do Estroma do Timo , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Amigdalina/metabolismo , Ligante OX40/metabolismo , Ligante OX40/farmacologia , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Citocinas/metabolismo , Asma/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Células Th2/metabolismo , Células Dendríticas/metabolismo , Camundongos Endogâmicos BALB C
19.
Vopr Onkol ; 58(5): 698-704, 2012.
Artigo em Russo | MEDLINE | ID: mdl-23600293

RESUMO

Letril (amygdaline) is one of drugs of alternative therapy for cancer that is used over three decades and relates to cyanogenic glycosides received from kernels of various fruits (almonds, apricots, peaches, etc. The basis of suggestion of letril as antitumor agent is hypotheses about selective fermentative splitting of amygdaline in tumor cells with developing of cyanide that should cause to apoptosis as a result of aerobic glycolysis suppression. None of these assumptions found their experimental confirmation. In clinical trials there was established inefficiency of letril with a very high probability to develop severe cyanide intoxication. Despite obtained scientific data and absence of permission from the supervising institutions (FDA) letril is still advertised, produced and distributed as anti-tumor drug.


Assuntos
Amigdalina/efeitos adversos , Amigdalina/metabolismo , Antineoplásicos/efeitos adversos , Antineoplásicos/metabolismo , Cianetos/efeitos adversos , Neoplasias/tratamento farmacológico , Amigdalina/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Ensaios Clínicos como Assunto , Humanos , National Cancer Institute (U.S.) , Neoplasias/metabolismo , Nitrilas/efeitos adversos , Nitrilas/metabolismo , Falha de Tratamento , Estados Unidos
20.
Elife ; 112022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472498

RESUMO

While foraging for nectar and pollen, bees are exposed to a myriad of xenobiotics, including plant metabolites, which may exert a wide range of effects on their health. Although the bee genome encodes enzymes that help in the metabolism of xenobiotics, it has lower detoxification gene diversity than the genomes of other insects. Therefore, bees may rely on other components that shape their physiology, such as the microbiota, to degrade potentially toxic molecules. In this study, we show that amygdalin, a cyanogenic glycoside found in honey bee-pollinated almond trees, can be metabolized by both bees and members of the gut microbiota. In microbiota-deprived bees, amygdalin is degraded into prunasin, leading to prunasin accumulation in the midgut and hindgut. In microbiota-colonized bees, on the other hand, amygdalin is degraded even further, and prunasin does not accumulate in the gut, suggesting that the microbiota contribute to the full degradation of amygdalin into hydrogen cyanide. In vitro experiments demonstrated that amygdalin degradation by bee gut bacteria is strain-specific and not characteristic of a particular genus or species. We found strains of Bifidobacterium, Bombilactobacillus, and Gilliamella that can degrade amygdalin. The degradation mechanism appears to vary since only some strains produce prunasin as an intermediate. Finally, we investigated the basis of degradation in Bifidobacterium wkB204, a strain that fully degrades amygdalin. We found overexpression and secretion of several carbohydrate-degrading enzymes, including one in glycoside hydrolase family 3 (GH3). We expressed this GH3 in Escherichia coli and detected prunasin as a byproduct when cell lysates were cultured with amygdalin, supporting its contribution to amygdalin degradation. These findings demonstrate that both host and microbiota can act together to metabolize dietary plant metabolites.


Most plants produce chemicals that are toxic to at least some animals. Whether or not the toxins are harmful to a particular animal depends on how much they consume and the specific biochemistry that occurs during digestion. The enzymes produced in the gut both by the animal and by the microbes that reside there often help break down toxic substances into less harmful molecules. However, some products of this breakdown can be toxic themselves. While these products can harm the animal, they may also be detrimental to parasites living in the gut, resulting in an overall positive effect. Almonds and their pollen are consumed by humans and bees without apparent harmful effects. However, almonds contain amygdalin, a molecule that can produce the highly toxic compound hydrogen cyanide upon digestion. Although amygdalin can be toxic to bees in high doses, the amount usually found in almond nectar is not harmful, and indeed, it may protect bees from parasites. Motta et al. wanted to know how amygdalin is digested in the gut of bees, and whether gut microbes have a role in this digestion. To answer these questions, Motta et al. compared the effects of consuming amygdalin on normal bees and bees lacking gut microbes. Bees without gut microbes broke down amygdalin into a harmless substance called prunasin. However, only bees with gut microbes could further break down prunasin into hydrogen cyanide. Interestingly, the full metabolism of amygdalin had no detectable effect on whether the bees survived for longer times or on which microbes were found in the gut. Motta et al. also found some gut bacteria in bees that can break down amygdalin and release hydrogen cyanide, and identified the enzyme responsible for the process. When the gene encoding this enzyme was inserted into a different species of bacteria, the second species gained the ability to break down amygdalin. The findings of Motta et al. explain a role of gut microbes in processing amygdalin in bees. In the future, this may be the key to understanding how humans and other creatures process plant toxins. Future work on the relationship between animals and microbes living in their guts could help scientists understand how to manipulate the digestion and processing of toxins, nutrients, or drugs to benefit human health.


Assuntos
Amigdalina , Microbioma Gastrointestinal , Microbiota , Toxinas Biológicas , Abelhas , Animais , Amigdalina/metabolismo , Nitrilas , Microbioma Gastrointestinal/fisiologia , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA