RESUMO
The ecology of nectarivorous microbial communities remains virtually unknown, which precludes elucidating whether these organisms play some role in plant-pollinator mutualisms beyond minor commensalism. We simultaneously assessed microbial abundance and nectar composition at the individual nectary level in flowers of three southern Spanish bumble bee-pollinated plants (Helleborus foetidus, Aquilegia vulgaris, and Aquilegia pyrenaica cazorlensis). Yeasts were frequent and abundant in nectar of all species, and variation in yeast density was correlated with drastic changes in nectar sugar concentration and composition. Yeast communities built up in nectar from early to late floral stages, at which time all nectaries contained yeasts, often at densities between 10(4) and 10(5) cells/mm3. Total sugar concentration and percentage sucrose declined, and percentage fructose increased, with increasing density of yeast cells in nectar. Among-nectary variation in microbial density accounted for 65% (H. foetidus and A. vulgaris) and 35% (A. p. cazorlensis) of intraspecific variance in nectar sugar composition, and 60% (H. foetidus) and 38% (A. vulgaris) of variance in nectar concentration. Our results provide compelling evidence that nectar microbial communities can have detrimental effects on plants and/or pollinators via extensive nectar degradation and also call for a more careful interpretation of nectar traits in the future, if uncontrolled for yeasts.
Assuntos
Aquilegia/microbiologia , Abelhas/fisiologia , Flores/microbiologia , Helleborus/microbiologia , Polinização/fisiologia , AnimaisRESUMO
Previous works indicated a considerable variation in the pathogenicity, virulence, and host range of Oidium neolycopersici isolates causing tomato powdery mildew epidemics in many parts of the world. In this study, rDNA internal transcribed spacer (ITS) sequences, and amplified fragment length polymorphism (AFLP) patterns were analyzed in 17 O. neolycopersici samples collected in Europe, North America, and Japan, including those which overcame some of the tomato major resistance genes. The ITS sequences were identical in all 10 samples tested and were also identical to ITS sequences of eight previously studied O. neolycopersici specimens. The AFLP analysis revealed a high genetic diversity in O. neolycopersici and indicated that all 17 samples represented different genotypes. This might suggest the existence of either a yet unrevealed sexual reproduction or other genetic mechanisms that maintain a high genetic variability in O. neolycopersici. No clear correlation was found between the virulence and the AFLP patterns of the O. neolycopersici isolates studied. The relationship between O. neolycopersici and powdery mildew anamorphs infecting Aquilegia vulgaris, Chelidonium majus, Passiflora caerulea, and Sedum alboroseum was also investigated. These anamorphs are morphologically indistinguishable from and phylogenetically closely related to O. neolycopersici. The cross-inoculation tests and the analyses of ITS sequences and AFLP patterns jointly indicated that the powdery mildew anamorphs collected from the above mentioned plant species all represent distinct, but closely related species according to the phylogenetic species recognition. All these species were pathogenic only to their original host plant species, except O. neolycopersici which infected S. alboroseum, tobacco, petunia, and Arabidopsis thaliana, in addition to tomato, in cross-inoculation tests. This is the first genome-wide study that investigates the relationships among powdery mildews that are closely related based on ITS sequences and morphology. The results indicate that morphologically indistinguishable powdery mildews that differed in only one to five single nucleotide positions in their ITS region are to be considered as different taxa with distinct host ranges.