Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(23): 6016-6021, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784774

RESUMO

Trait-based community ecology promises an understanding of the factors that determine species abundances and distributions across habitats. However, ecologists are often faced with large suites of potentially important traits, making generalizations across ecosystems and species difficult or even impossible. Here, we hypothesize that key traits structuring ecological communities may be causally dependent on common physiological mechanisms and that elucidating these mechanisms can help us understand the distributions of traits and species across habitats. We test this hypothesis by investigating putatively causal relationships between physiological and behavioral traits at the species and community levels in larvae of 17 species of dragonfly that co-occur at the landscape scale but segregate among lakes. We use tools borrowed from phenotypic selection analyses to show that physiological traits underlie activity rate, which has opposing effects on foraging and predator avoidance behaviors. The effect of activity on these behaviors ultimately shapes species distributions and community composition in habitats with either large-bodied fish or invertebrates as top predators. Remarkably, despite the inherent complexity of ecological communities, the expression of just two biomolecules accounts for a high proportion of the variation in behavioral traits and hence, dragonfly community composition between habitats. We suggest that causal relationships among traits can drive species distributions and community assembly.


Assuntos
Comportamento Animal/fisiologia , Biota/fisiologia , Odonatos/fisiologia , Animais , Arginina Quinase/análise , Arginina Quinase/fisiologia , Biodiversidade , Ecossistema , Cadeia Alimentar , Hidroliases/análise , Hidroliases/fisiologia , Larva/fisiologia , Fenótipo , Comportamento Predatório/fisiologia
2.
J Neurosci ; 32(7): 2314-23, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396406

RESUMO

Adolescence is characterized by vulnerability to the development of neuropsychiatric disorders including drug addiction, as well as prefrontal cortical refinement that culminates in structural stability in adulthood. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, although intracellular mechanisms are largely unknown. We characterized layer V prefrontal dendritic spine development and refinement in adolescent wild-type mice and mice lacking the cytoskeletal regulatory protein Abl-related gene (Arg) kinase. Relative to hippocampal CA1 pyramidal neurons, which exhibited a nearly linear increase in spine density up to postnatal day 60 (P60), wild-type prefrontal spine density peaked at P31, and then declined by 18% by P56-P60. In contrast, dendritic spines in mice lacking Arg destabilized by P31, leading to a net loss in both structures. Destabilization corresponded temporally to the emergence of exaggerated psychomotor sensitivity to cocaine. Moreover, cocaine reduced dendritic spine density in wild-type orbitofrontal cortex and enlarged remaining spine heads, but arg(-/-) spines were unresponsive. Local application of Arg or actin polymerization inhibitors exaggerated cocaine sensitization, as did reduced gene dosage of the Arg substrate, p190RhoGAP. Genetic and pharmacological Arg inhibition also retarded instrumental reversal learning and potentiated responding for reward-related cues, providing evidence that Arg regulates both psychomotor sensitization and decision-making processes implicated in addiction. These findings also indicate that structural refinement in the adolescent orbitofrontal cortex mitigates psychostimulant sensitivity and support the emerging perspective that the structural response to cocaine may, at any age, have behaviorally protective consequences.


Assuntos
Arginina Quinase/fisiologia , Cocaína/farmacologia , Espinhas Dendríticas/enzimologia , Plasticidade Neuronal , Córtex Pré-Frontal/enzimologia , Potenciais de Ação/genética , Fatores Etários , Animais , Arginina Quinase/deficiência , Espinhas Dendríticas/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Córtex Pré-Frontal/efeitos dos fármacos
3.
Cell Rep ; 14(9): 2059-2067, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923601

RESUMO

Deficiency of S6 kinase (S6K) extends the lifespan of multiple species, but the underlying mechanisms are unclear. To discover potential effectors of S6K-mediated longevity, we performed a proteomics analysis of long-lived rsks-1/S6K C. elegans mutants compared to wild-type animals. We identified the arginine kinase ARGK-1 as the most significantly enriched protein in rsks-1/S6K mutants. ARGK-1 is an ortholog of mammalian creatine kinase, which maintains cellular ATP levels. We found that argk-1 is possibly a selective effector of rsks-1/S6K-mediated longevity and that overexpression of ARGK-1 extends C. elegans lifespan, in part by activating the energy sensor AAK-2/AMPK. argk-1 is also required for the reduced body size and increased stress resistance observed in rsks-1/S6K mutants. Finally, creatine kinase levels are increased in the brains of S6K1 knockout mice. Our study identifies ARGK-1 as a longevity effector in C. elegans with reduced RSKS-1/S6K levels.


Assuntos
Arginina Quinase/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Creatina Quinase/fisiologia , Longevidade , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Ativação Enzimática , Feminino , Masculino , Camundongos Knockout , Neuroglia/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo
4.
FEBS Lett ; 554(1-2): 201-5, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14596940

RESUMO

Arginine kinase catalyzes the reversible transphosphorylation between adenosine diphosphate (ADP) and phosphoarginine, which is involved in temporal and spatial adenosine triphosphate (ATP) buffering. Here we demonstrate that the homologous overexpression of the Trypanosoma cruzi arginine kinase improves the ability of the transfectant cells to grow and resist nutritional and pH stress conditions. The stable transfected parasites showed an increased cell density since day 10 of culture, when the carbon sources became scarce, which resulted 2.5-fold higher than the control group on day 28. Additional stress conditions were also tested. We propose that arginine kinase is involved in the adaptation of the parasite to environmental changes.


Assuntos
Arginina Quinase/fisiologia , Trypanosoma cruzi/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Arginina Quinase/biossíntese , Arginina Quinase/genética , Soluções Tampão , Meios de Cultura/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Transfecção , Trypanosoma cruzi/enzimologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-21146627

RESUMO

A gene encoding Bombyx mori arginine kinase (BmAK) has been indentified differentially expressed in the midguts of Bombyx mori strain NB which is resistant to nucleopolyhedrovirus (BmNPV), strain 306 which is susceptible to NPV and a near isogenic line BC(8) with similar genetic background to 306 but resistant to NPV by two-dimensional gel electrophoresis (2-DE). In this study, we characterized the expression profiles of BmAK using RT-PCR and real-time quantitative PCR. The expression level of BmAK fluctuated in various developing stage and various tissue. Remarkably, the expression level of BmAK increased more than 10-fold 24 hours post inoculation (h p.i.) of NPV in strain NB and BC(8), while such increment was abraded in strain 306 although the basal expression level of BmAK in strain 306 was higher than that of strain NB and BC(8). Western blotting analysis using polyclonal antibody against BmAK verified such observation, and immunofluoresence analysis indicated for the first time that BmAK was mainly located to the cytoplasm or some structures in cytoplasm. These findings suggest that arginine kinase is involved in the antiviral process of Bombyx mori larvae against NPV infection.


Assuntos
Arginina Quinase/metabolismo , Bombyx/enzimologia , Bombyx/virologia , Nucleopoliedrovírus , Animais , Arginina Quinase/genética , Arginina Quinase/fisiologia , Western Blotting , Bombyx/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Distribuição Tecidual
8.
Biochem J ; 309 ( Pt 1): 255-61, 1995 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-7619066

RESUMO

Purification and biophysical characterization of mitochondrial creatine kinase (Mi-CK) from sperm of the sea urchin Psammechinus miliaris, as well as gel-permeation chromatography of human heart Mi-CK demonstrate that these two Mi-CK isoenzymes form highly symmetrical octameric molecules with an M(r) of approx. 350,000, a value similar to that found for all other Mi-CK isoenzymes investigated so far. The absolute evolutionary conservation of this oligomeric form from sea urchins to mammals points both to its essentiality for Mi-CK function and to an important role of octameric Mi-CK in the energy metabolism of tissues and cells with high and fluctuating energy demands. To investigate whether a similar physiological principle also operates in an even more distantly related animal phylum, the arginine kinase (ArgK) isoenzyme system of Drosophila flight muscle was investigated with two independent subcellular fractionation procedures and subsequent analysis of the fractions by SDS/PAGE, immunoblotting and native isoenzyme electrophoresis. In contrast with a previous report [Munneke and Collier (1988) Biochem. Genet. 26, 131-141], strong evidence against the occurrence of a Mi-ArgK isoenzyme in Drosophila was obtained. The findings of the present study are discussed in the context of CK and ArgK function in general and of structural and bioenergetic differences between vertebrate striated muscles and arthropod flight muscles.


Assuntos
Arginina Quinase/química , Creatina Quinase/química , Drosophila/enzimologia , Isoenzimas/química , Ouriços-do-Mar/enzimologia , Animais , Arginina Quinase/isolamento & purificação , Arginina Quinase/fisiologia , Creatina Quinase/isolamento & purificação , Creatina Quinase/fisiologia , Humanos , Isoenzimas/isolamento & purificação , Isoenzimas/fisiologia , Masculino , Miocárdio/enzimologia , Conformação Proteica , Espermatozoides/enzimologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA