Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Chem Biodivers ; 21(2): e202301781, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146649

RESUMO

Polysaccharide from Asarum sieboldii Miq (ASP) was extracted and five phosphorylation polysaccharides with different degree of substitution were obtained, namely ASPP1, ASPP2, ASPP3, ASPP4, and ASPP5 (ASPPs). The physical and chemical structure and biological activities were studied. The results suggested that the carbohydrate and protein content were reduced while uronic acid was increased after phosphorylation modification. The molecular weight of ASPPs was significantly lower than that of ASP. ASPPs were acidic heteropolysaccharides mainly composed of galacturonic acid, galactose, glucose, fructose, and arabinose. The UV-vis spectrum indicated that the polysaccharides did not contain nucleic acid or protein after modification. The Fourier transform infrared spectrum demonstrated that ASPPs contained characteristic absorption peaks of P=O and P-O-C near 1270 and 980 cm-1 . ASPPs presented a triple helix conformation, but it was not presented in ASP. The scanning electron microscopy analysis showed that the surface topography and particle structure of ASP were different after modification. Compared with ASP, ASPPs enhanced the activity to scavenge DPPH and ABTS free radicals and possessed more protective ability to DNA oxidation caused by OH⋅, GS⋅, and AAPH free radicals. These results suggest that chemical modification is beneficial for the exploitation and utilization of natural polysaccharides.


Assuntos
Antioxidantes , Asarum , Antioxidantes/farmacologia , Antioxidantes/química , Fosforilação , Polissacarídeos/farmacologia , Polissacarídeos/química , Radicais Livres , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2680-2688, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812168

RESUMO

Methyleugenol is one of the main active constituents in the volatile oil of the traditional Chinese medicine Asari Radix et Rhizoma. It possesses various pharmacological effects such as analgesic, anesthetic, and anti-inflammatory properties. In biosynthesis, the initial precursor phenylalanine is finally converted into methyleugenol through a series of intermediate compounds including coniferyl acid, courmaryl acid, caffeic acid, ferulic acid/ferulic-CoA, coniferyl aldehyde, conferyl alcohol, cnfiferyl acetate, and eugenol/isoeugenol, which are produced through catalysis of a large number of enzymes. Eugenol O-methyltransferase(EOMT) is one of the key enzymes in the biosynthesis pathway, capable of methylating eugenol on the para-site hydroxyl group of the benzene ring, thereby generating methyleugenol. Here, an(iso)eugenol O-methyltransferase(IEMT) gene was cloned for the first time from Asarum siebo-ldii, holding an open reading frame that consisted of 1 113 bp and encoded a protein containing 370 amino acid residues. Bioinformatics analysis results showed that this protein was equipped with the characteristic structural domains of methyltransferases such as S-adenosylmethionine(SAM) binding sites and dimerization domains. The prokaryotic expression recombinant plasmid pET28a(+)-AsIEMT was constructed, and the candidate protein was induced and purified. In vitro enzyme assays confirmed that AsIEMT had dual functions. The enzyme could catalyze the production either of methyleugenol from eugenol or of methylisoeugenol from isoeugenol, although the latter was more prevalent. When isoeugenol was used as the substrate, the kinetics parameters K_m and V_(max) of catalytic reaction were(0.90±0.06) mmol·L~(-1) and(1.32±0.04)nmol·s~(-1)·mg~(-1), respectively. This study expanded our understandings of critical enzyme genes involved in phenylpropanoid metabolic pathways, and would facilitate the elucidation of quality formation mechanisms of the TCM Asari Radix et Rhizoma.


Assuntos
Asarum , Eugenol , Metiltransferases , Metiltransferases/genética , Metiltransferases/química , Metiltransferases/metabolismo , Eugenol/análogos & derivados , Eugenol/metabolismo , Eugenol/química , Asarum/genética , Asarum/química , Asarum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Filogenia , Sequência de Aminoácidos , Clonagem Molecular
3.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2575-2584, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812158

RESUMO

Asari Radix et Rhizoma is a common drug for relieving exterior syndrome in clinics, but its toxicity limits its use. In this study, the mechanism of hepatic damage of Asari Radix et Rhizoma was studied by network pharmacology and metabolomics. The hepatic damage-related dataset, namely GSE54257 was downloaded from the GEO database. The Limma package was used to analyze the differentially expressed genes in the dataset GSE54257. Toxic components and target genes of Asari Radix et Rhizoma were screened by TCMSP, ECTM, and TOXNET. The hepatic damage target genes of Asari Radix et Rhizoma were obtained by mapping with the differentially expressed gene of GSE54257, and a PPI network was constructed. GO and KEGG enrichment analysis of target genes were performed, and a "miRNA-target gene-signal pathway" network was drawn with upstream miRNA information. Thirty rats were divided into a blank group, a high-dose Asari Radix et Rhizoma group, and a low-dose Asari Radix et Rhizoma group, which were administered once a day. After continuous administration for 28 days, liver function indexes and liver pathological changes were detected. Five liver tissue samples were randomly collected from the blank group and high-dose Asari Radix et Rhizoma group, and small molecule metabolites were analyzed by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS). The orthogonal partial least squares-discriminant analysis(OPLS-DA) method was used to screen differential metabolites, and enrichment analysis, correlation analysis, and cluster analysis were conducted for differential metabolites. Finally, the MetaboAnalyst platform was used to conduct pathway enrichment analysis for differential metabolites. It was found that there were 14 toxic components in Asari Radix et Rhizoma, corresponding to 37 target genes, and 12 genes related to liver toxicity of Asari Radix et Rhizoma were obtained by mapping to differentially expressed genes of GSE54257. The animal test results showed that Asari Radix et Rhizoma could significantly increase the liver function index, reduce the activity of the free radical scavenging enzyme, change the liver oxidative stress level, and induce lipid peroxidation damage in rats. The results of untargeted metabolomics analysis showed that compared with the blank group, nine metabolites were up-regulated, and 16 metabolites were down-regulated in the liver tissue of the Asari Radix et Rhizoma group. These 25 metabolites had strong correlations and good clustering. Pathway enrichment analysis showed that these differential metabolites and the 12 hepatotoxic target genes of Asari Radix et Rhizoma were mainly involved in purine metabolism, as well as the biosynthesis and metabolism of valine, leucine, glycine, serine, and threonine. The study confirmed that the hepatica damage effect of Asari Radix et Rhizoma was the result of multi-component, multi-target, and multi-signaling pathways, and its mechanism may be related to inhibiting nucleotide synthesis and affecting protein metabolism.


Assuntos
Medicamentos de Ervas Chinesas , Fígado , Metabolômica , Animais , Ratos , Medicamentos de Ervas Chinesas/administração & dosagem , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Farmacologia em Rede , Ratos Sprague-Dawley , Asarum/química , Asarum/genética , Asarum/metabolismo , Rizoma/química , Humanos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética
4.
Ann Bot ; 131(3): 423-436, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579472

RESUMO

BACKGROUND AND AIMS: Evergreen herbaceous species in the deciduous forest understorey maintain their photosystems in long-lived leaves under dynamic seasonal changes in light and temperature. However, in evergreen understorey herbs, it is unknown how photosynthetic electron transport acclimates to seasonal changes in forest understorey environments, and what photoprotection systems function in excess energy dissipation under high-light and low-temperature environments in winter. METHODS: Here, we used Asarum tamaense, an evergreen herbaceous species in the deciduous forest understorey with a single-flush and long-lived leaves, and measured photosynthetic CO2 assimilation and electron transport in leaves throughout the year. The contents of photosynthetic proteins, pigments and primary metabolites were determined from regularly collected leaves. KEY RESULTS: Both the rates of CO2 assimilation and electron transport under saturated light were kept low in summer, but increased in autumn and winter in A. tamaense leaves. Although the contents of photosynthetic proteins including Rubisco did not increase in autumn and winter, the proton motive force and ΔpH across the thylakoid membrane were high in summer and decreased from summer to winter to a great extent. These decreases alleviated the suppression by lumen acidification and increased the electron transport rate in winter. The content and composition of carotenoids changed seasonally, which may affect changes in non-photochemical quenching from summer to winter. Winter leaves accumulated proline and malate, which may support cold acclimation. CONCLUSIONS: In A. tamaense leaves, the increase in photosynthetic electron transport rates in winter was not due to an increase in photosynthetic enzyme contents, but due to the activation of photosynthetic enzymes and/or release of limitation of photosynthetic electron flow. These seasonal changes in the regulation of electron transport and also the changes in several photoprotection systems should support the acclimation of photosynthetic C gain under dynamic environmental changes throughout the year.


Assuntos
Asarum , Asarum/metabolismo , Estações do Ano , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo
5.
Bioorg Med Chem Lett ; 92: 129386, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355024

RESUMO

Asarum sieboldii var. seoulense is a plant species under the family Aristolochiaceae and has been used for centuries as an ingredient in a well-known Traditional Chinese medicine (TCM), "Xixin", to treat symptoms of the neurodegenerative condition Parkinson's Disease (PD). Although there have been studies on the neuroprotective effect of this TCM, the phenotypic profiles of its chemical constituents against PD-implicated cellular organelles have not been reported. This research investigated the chemistry of A. sieboldii var. seoulense extract to identify the active small molecules that exhibited perturbation to the cellular compartments related to PD, potentially supporting its traditional application in treating this condition. 1H NMR-guided chemical investigation of this plant yielded twenty secondary metabolites which belong to isobutylamides, lignans and phenolics. The compounds were evaluated against an olfactory cell line derived from a PD patient using phenotypic assay. Several isolates, 2, 3, 7, 11, 13-16 and 18-20, were found to induce moderate perturbation to the staining of mitochondria, autophagosome and α-tubulin of the cells. Considering that PD pathogenesis is closely related to these cellular compartments, the results provided a rationale for the traditional application of Xixin in the treatment of PD.


Assuntos
Asarum , Doença de Parkinson , Humanos , Asarum/química , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular , Compostos Fitoquímicos
6.
Biotechnol Appl Biochem ; 70(1): 83-96, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35244949

RESUMO

Asarum sieboldii Miq., a perennial herb of the family Aristolochiaceae, is widely used in China to treat cold, fever, aphthous stomatitis, toothache, gingivitis, and rheumatoid arthritis. Methyleugenol is the most representative pharmacological constituent of this medicinal herb. Cinnamoyl-CoA reductase (CCR), which has been well known for occupying a critical position in the lignin biosynthesis pathway, is also shared with the biosynthesis of methyleugenol. To better understand the regulatory mechanisms of methyleugenol biosynthesis, a 1530-bp long promoter region of the AsCCR1 gene was isolated. PLACE and PlantCARE analysis affirmed the existence of the core promoter elements such as TATA and CAAT boxes, abiotic stress-responsive cis-regulation elements like abscisic acid-responsive element, G-box, and MBS in the isolated sequence. The histochemical assay suggested that it was a constitutive promoter, highly expressed in the root tissue. Moreover, the region of -200 bp to ATG (start codon) was enough to drive the expression of It GUS gene. Treatments with low temperature and high concentration of gibberellin or abscisic acid demonstrated the abiotic stress-induced expression of the AsCCR1 promoter. Overall, this study revealed the isolation and characterization of the AsCCR1 promoter. Moreover, it also provided a candidate gene for molecular breeding in A. sieboldii to enhance its pharmacological potential.


Assuntos
Asarum , Ácido Abscísico/farmacologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas
7.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139216

RESUMO

(1) To examine the potential mechanism of the Asarum-Angelica drug pair against periodontitis and provide an experimental basis for the treatment of periodontitis with herbal medicine. (2) The core components and core targets of the Asarum-Angelica drug pair in the treatment of periodontitis were detected according to network pharmacology methods. Finally, the effect of the Asarum-Angelica drug pair on osteogenic differentiation was observed in mouse embryonic osteoblast precursor cells. (3) According to the results of network pharmacology, there are 10 potential active ingredients in the Asarum-Angelica drug pair, and 44 potential targets were obtained by mapping the targets with periodontitis treatment. Ten potential active ingredients, such as kaempferol and ß-sitosterol, may play a role in treating periodontitis. Cell experiments showed that the Asarum-Angelica drug pair can effectively promote the expression of osteoblast markers alkaline phosphatase (ALP), Runt-related Transcription Factor 2 (RUNX2), and BCL2 mRNA and protein in an inflammatory environment (p < 0.05). (4) Network pharmacology effectively analyzed the molecular mechanism of Asarum-Angelica in the treatment of periodontitis, and the Asarum-Angelica drug pair can promote the differentiation of osteoblasts.


Assuntos
Angelica , Asarum , Medicamentos de Ervas Chinesas , Periodontite , Animais , Camundongos , Farmacologia em Rede , Osteogênese , Periodontite/tratamento farmacológico , Simulação de Acoplamento Molecular
8.
Molecules ; 28(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985550

RESUMO

The essential oils (EOs) of the aerial parts of four Asarum species (A. geophilum, A. yentunensis, A. splendens and A. cordifolium) were isolated by steam distillation and analyzed by the GC/MS method. The A. cordifolium EO contains 33 constituents with the main component being elemicine (77.20%). The A. geophilum EO was contains 49 constituents with the main components being determined as 9-epi-(E)-caryophyllene (18.43%), eudesm-7(11)-en-4-ol (13.41%), ß-caryophyllene (8.05%) and phytol (7.23%). The A. yentunensis EO contains 26 constituents with the main components being safrole (64.74%) and sesquicineole (15.34%). The EO of A. splendens contains 41 constituents with the main components being 9-epi-(E)-caryophyllene (15.76%), eudesm-7(11)-en-4-ol (14.21%), ß-caryophyllene (9.52%) and trans-bicyclogermacrene (7.50%). For antimicrobial activity, the A. yentunensis EO exhibited the highest inhibition activity against Staphylococcus aureus and the A. cordifolium EO against Bacillus subtillis (MIC values of 100 µg/mL). For antioxidant activity, the A. geophilum EO showed the highest potential with an SC (%) value of 63.34 ± 1.0%, corresponding to an SC50 value of 28.57 µg/mL. For anti-inflammatory activity, the A. splendens EO exhibited the highest potential with an IC50 value of 21.68 µg/mL, corresponding to an inhibition rate of NO production of 69.58 ± 1.3% and the percentage of cell life was 81.85 ± 0.9%.


Assuntos
Asarum , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Vietnã , Testes de Sensibilidade Microbiana , Antioxidantes/farmacologia
9.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5519-5530, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114144

RESUMO

To explore the genetic diversity of Asarum sieboldii this study developed SSR markers based on transcriptome sequencing results and five populations of A.sieboldii from different regions were used as samples for genetic diversity assessment using software such as GenALEx 6.5, NTSYS 2.1, and Structure 2.3.4. The results showed that 16 SSR markers with high polymorphism and good repeatability were selected from the A.sieboldii transcriptome. Primers designed based on the flanking sequences of these markers successfully amplified 56 polymorphic fragments from 150 individual samples of the five A.sieboldii populations. On average, each primer amplified 3.5 polymorphic fragments, ranging from 2 to 8. The mean values of expected heterozygosity(H_e), Shannon's diversity index(I), Nei's gene diversity index(H), and the polymorphic information content(PIC) were 0.172, 0.281, 0.429, and 0.382, respectively. The mean population differentiation coefficient(F_(ST)) was 0.588, consistent with the analysis of molecular variance(AMOVA) results, which indicated greater genetic variation among A.sieboldii populations(69%) than that within populations(31%). The percentage of polymorphic loci(PPL) ranged from highest to lowest as SNJ>LN>SY>SZ>TB. Principal coordinate analysis(PCoA) and UPGMA clustering analysis further revealed genetic clustering of A.sieboldii individuals based on their geographical distribution, consistent with the results of the structure clustering analysis. In summary, the SSR markers developed from the transcriptome effectively assessed the genetic differentiation and population structure of natural A.sieboldii populations, revealing a relatively low genetic diversity in A.sieboldii, with genetic variation primarily observed at the population level and a correlation between population differentiation and geographic distance.


Assuntos
Asarum , Variação Genética , Humanos , Transcriptoma/genética , Repetições de Microssatélites/genética , Filogenia
10.
Chem Biodivers ; 19(6): e202100986, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35502747

RESUMO

Bioassay-guided fractionation of Asarum heterotropoides var. mandshuricum F. Maekawa (Aristolochiaceae) root extract led to the isolation and characterization of one new ferulic acid glucose ester (1) and nine known lignans (2-10). Their structures were elucidated using extensive spectroscopic methods, including 1D and 2D NMR, and MS spectra. The anti-inflammatory effects of the isolated compounds were investigated via their inhibition against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells. Among them, compound 7 ((1R,2S,5R,6R)-5'-O-methylpluviatilol) showed the most effective inhibitory activity against NO production and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein in an exceedingly dose-dependent manner. In addition, further study revealed that the mechanism of anti-inflammatory activity of the most active lignan (7) might be associated with the inhibition of extracellular-signal-regulated kinase (ERK) and nuclear factor kappa B (NF-κB) phosphorylation.


Assuntos
Asarum , Lignanas , Animais , Anti-Inflamatórios/química , Asarum/química , Asarum/metabolismo , Lignanas/química , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo
11.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335369

RESUMO

Antibiotic resistance rate is rising worldwide. Silver nanoparticles (AgNPs) are potent for fighting antimicrobial resistance (AMR), independently or synergistically. The purpose of this study was to prepare AgNPs using wild ginger extracts and to evaluate the antibacterial efficacy of these AgNPs against multidrug-resistant (MDR) Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. AgNPs were synthesized using wild ginger extracts at room temperature through different parameters for optimization, i.e., pH and variable molar concentration. Synthesis of AgNPs was confirmed by UV/visible spectroscopy and further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDXA), and Fourier-transform infrared spectroscopy (FTIR). Disc and agar well diffusion techniques were utilized to determine the in vitro antibacterial activity of plant extracts and AgNPs. The surface plasmon resonance peaks in absorption spectra for silver suspension showed the absorption maxima in the range of 400-420 nm. Functional biomolecules such as N-H, C-H, O-H, C-O, and C-O-C were present in Zingiber zerumbet (Z. zerumbet) (aqueous and organic extracts) responsible for the AgNP formation characterized by FTIR. The crystalline structure of ZZAE-AgCl-NPs and ZZEE-AgCl-NPs was displayed in the XRD analysis. SEM analysis revealed the surface morphology. The EDXA analysis also confirmed the element of silver. It was revealed that AgNPs were seemingly spherical in morphology. The biosynthesized AgNPs exhibited complete antibacterial activity against the tested MDR bacterial strains. This study indicates that AgNPs of wild ginger extracts exhibit potent antibacterial activity against MDR bacterial strains.


Assuntos
Asarum , Nanopartículas Metálicas , Antibacterianos/química , Bactérias , Nanopartículas Metálicas/química , Prata/química
12.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4048-4054, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046894

RESUMO

Light is the main source for plants to obtain energy.Asarum forbesii is a typical shade medicinal plant, which generally grows in the shady and wet place under the bushes or beside the ditches.It can grow and develop without too much light intensity.This experiment explores the effects of shading on the growth, physiological characteristics and energy metabolism of A.forbesii, which can provide reference and guidance for its artificial planting.In this experiment, A.forbesii was planted under 80%, 60%, 40%, 20% and no shade.During the vigorous growth period, the photosynthetic physiological characteristics such as fluorescence parameters, photosynthetic parameters, photosynthetic pigment content and ultrastructure, as well as the content of mitochondrial electron transport chain(ETC) synthase and nutrients were measured.The results showed that the photosynthetic pigment content, chlorophyll fluorescence parameters and net photosynthesis rate(P_n) decreased with the decrease of shading.Under 20%-40% shading treatment, the plants had damaged ultrastructure, expanded and disintegrated chloroplast, disordered stroma lamella and grana lamella, and increased osmiophi-lic granules and starch granules.The activities of nicotinamide adenine dinucleotide dehydrogenase(NADH), succinate dehydrogenase(SDH), cytochrome C oxidoreductase(CCO) and adenosine triphosphate(ATP) synthasewere positively related to light intensity.With the reduction of shading, the content of total sugar and protein in nutrients increased first and then decreased, and the content was the highest under 60% shade.In conclusion, under 60%-80% shading treatment, the chloroplast and mitochondria had more complete structure, faster energy metabolism, higher light energy-conversion efficiency, better absorption and utilization of light energy and more nutrient synthesis, which was more suitable for the growth and development of A.forbesii.


Assuntos
Asarum , Clorofila/metabolismo , Cloroplastos , Metabolismo Energético , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
13.
BMC Genomics ; 22(1): 16, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407099

RESUMO

BACKGROUND: Asarum heterotropides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. is an important medicinal and industrial plant, which is used in the treatment of various diseases. The main bioactive ingredient is the volatile oil having more than 82 identified components of which methyleugenol, safrole, myristicin, and toluene account for about 70% of the total volume. As a sciophyte plant, the amount of light it absorbs through leaves is an important factor for growth and metabolism. RESULTS: We grew Asarum plants under full, 50, 28, and 12% sunlight conditions to investigate the effect of different light irradiances on the four major volatile oil components. We employed de novo transcriptome sequencing to understand the transcriptional behavior of Asarum leaves regarding the biosynthetic pathways of the four volatile oil components, photosynthesis and biomass accumulation, and hormone signaling. Our results demonstrated that the increasing light conditions promoted higher percent of the four components. Under full sunlight conditions, cinnamyl alcohol dehydrogenase and cytochrome p450719As were upregulated and led the increased methyleugenol, safrole, and myristicin. The transcriptomic data also showed that Asarum leaves, under full sunlight conditions, adjust their photosynthesis-antenna proteins as a photoprotective response with the help of carotenoids. Plant hormone-signaling related genes were also differentially expressed between full sunlight and low light conditions. CONCLUSIONS: High light induces accumulation of major bioactive ingredients A. heterotropides volatile oil and this is ascribed to upregulation of key genes such as cinnamyl alcohol dehydrogenase and cytochrome p450719As. The transcriptome data presented here lays the foundation of further understanding of light responses in sciophytes and provides guidance for increasing bioactive molecules in Asarum.


Assuntos
Asarum , Óleos Voláteis , Fotossíntese/genética , Folhas de Planta/genética
14.
Genome ; 64(6): 639-653, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33320770

RESUMO

Asarum sieboldii, a well-known traditional Chinese medicinal herb, is used for curing inflammation and ache. It contains both the bioactive ingredient asarinin and the toxic compound aristolochic acid. To address further breeding demand, genes involved in the biosynthetic pathways of asarinin and aristolochic acid should be explored. Therefore, the full-length transcriptome of A. sieboldii was sequenced using PacBio Iso-Seq to determine the candidate transcripts that encode the biosynthetic enzymes of asarinin and aristolochic acid. In this study, 63 023 full-length transcripts were generated with an average length of 1371 bp from roots, stems, and leaves, of which 49 593 transcripts (78.69%) were annotated against public databases. Furthermore, 555 alternative splicing (AS) events, 10 869 long noncoding RNAs (lncRNAs) as well as their 11 291 target genes, and 17 909 simple sequence repeats (SSRs) were identified. The data also revealed 97 candidate transcripts related to asarinin metabolism, of which six novel genes that encoded enzymes involved in asarinin biosynthesis were initially reported. In addition, 56 transcripts related to aristolochic acid biosynthesis were also identified, including CYP81B. In summary, these transcriptome data provide a useful resource to study gene function and genetic engineering in A. sieboldii.


Assuntos
Anticolesterolemiantes/metabolismo , Anti-Hipertensivos/metabolismo , Antioxidantes/metabolismo , Ácidos Aristolóquicos/biossíntese , Ácidos Aristolóquicos/genética , Asarum/genética , Perfilação da Expressão Gênica , Plantas Medicinais/genética , Processamento Alternativo , Asarum/metabolismo , Vias Biossintéticas/genética , Dioxóis , Regulação da Expressão Gênica de Plantas , Lignanas , Repetições de Microssatélites , Melhoramento Vegetal , Folhas de Planta/genética , Raízes de Plantas/genética , Plantas Medicinais/metabolismo , RNA Longo não Codificante/metabolismo , Transcriptoma
15.
Anal Bioanal Chem ; 413(16): 4247-4253, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33950274

RESUMO

Aristolochic acid analogues (AAAs), naturally existing in herbal Aristolochia and Asarum genera, were once widely used in traditional pharmacopeias because of their anti-inflammatory properties, but lately they were identified as potential nephrotoxins and mutagens. A method for rapid characterization of AAAs in serum was developed using ion mobility spectrometry coupled with mass spectrometry (IMS-MS). Five AAAs, containing four aristolochic acids and one aristolactam, were separated and identified within milliseconds. AAAs were separated in gas phase based on the difference of their ion mobility (K0), and then identified based on their K0 values, m/z, and product ions from MS/MS. Quantitative analysis of AAAs was performed using an internal standard with a satisfactory sensitivity. Limits of detection (signal-to-noise = 3) and quantification (signal-to-noise = 10) were 1-5 ng/mL and 3-8 ng/mL, respectively. The method was validated and successfully applied to the pharmacokinetics study of AAAs in rats, offering a promising way for fast screening and evaluation of AAAs in biological samples.


Assuntos
Ácidos Aristolóquicos/sangue , Animais , Aristolochia/química , Ácidos Aristolóquicos/química , Asarum/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Espectrometria de Mobilidade Iônica/economia , Espectrometria de Mobilidade Iônica/métodos , Limite de Detecção , Masculino , Mutagênicos/química , Mutagênicos/farmacocinética , Ratos Sprague-Dawley
16.
Med Sci Monit ; 27: e931884, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083500

RESUMO

BACKGROUND This study assessed the effects and underlying molecular mechanisms of ß-asarone on ischemic stroke model rats. MATERIAL AND METHODS Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) in rats. Before and after modeling, cognitive function was evaluated via fear conditioning test and neurological deficit was determined via Longa and Bederson scores. Following treatment with ß-asarone or nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor for 20 consecutive days, the cerebral infarction was detected via TTC staining and Cresyl Violet staining in brain tissues. TUNEL staining and western blot analysis for apoptosis-related proteins were performed to assess the apoptosis of neurons. Nrf2-antioxidant response elements (ARE) pathway-related proteins were examined by RT-qPCR or western blot. RESULTS The cognitive and neurological function was defective in MCAO rats. The infarction volumes and the apoptosis of cortical neurons were significantly increased in brain tissues of model rats, which were ameliorated after treatment with ß-asarone. Meanwhile, the increase in pro-apoptotic proteins and decrease in anti-apoptotic proteins were found in brain tissues of model rats, which were markedly ameliorated by ß-asarone treatment. However, Nrf2 inhibitor worsened the cerebral infarction and the apoptosis of neurons. Western blot results showed that ß-asarone treatment activated the Nrf2-ARE pathway-related proteins in model rats, which was inhibited by Nrf2 inhibitor. CONCLUSIONS Our findings suggest that ß-asarone treatment ameliorated the cerebral infarction in MCAO rats, which could be related to activation of the Nrf2-ARE pathway.


Assuntos
Derivados de Alilbenzenos/farmacologia , Anisóis/farmacologia , Elementos de Resposta Antioxidante , Infarto da Artéria Cerebral Média , AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/análise , Asarum , Comportamento Animal/efeitos dos fármacos , Fibrinolíticos/farmacologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/terapia , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/etiologia , AVC Isquêmico/metabolismo , AVC Isquêmico/psicologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos
17.
Biomed Chromatogr ; 35(11): e5225, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34376019

RESUMO

Xin-Yu-Tie-Pian, an ointment patch which is composed of Tetradium ruticarpum and Asarum sieboldii Miquel, can be used for curing recurrent oral ulcers owing to its good bioactivities. Currently, the lack of a method for its quality evaluation hinders the development and clinical application of Xin-Yu-Tie-Pian. Thus, it is necessary to perform research on quality control. The chromatographic fingerprint, as an identification method, and the simultaneous determination method for two bioactive constituents, evodiamine and rutecarpine, can be used to evaluate the quality of traditional medicine. In this study, a two-step strategy including fingerprint analysis for identification and a simultaneous determination method for two bioactive constituents was performed for Xin-Yu-Tie-Pian quality control. The fingerprint analysis was validated by stability, precision and repeatability tests and a similarity evaluation was performed with 10 selected characteristic fingerprint peaks of 10 batches of Xin-Yu-Tie-Pian patch. Meanwhile, the simultaneous determination method was evaluated by methodological experiments, including linearity, accuracy, repeatability, stability and feasibility. Finally, the results indicate that this two-step strategy, including HPLC fingerprint analysis and simultaneous determination method, can be successfully applied for the assessment of the quality and quantity of Xin-Yu-Tie-Pian.


Assuntos
Asarum/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Rutaceae/química , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/normas , Limite de Detecção , Modelos Lineares , Pomadas , Controle de Qualidade , Reprodutibilidade dos Testes
18.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948197

RESUMO

Asarum sieboldii Miq. is a leading economic crop and a traditional medicinal herb in China. Leaf-blade and petiole are the only aerial tissues of A. sieboldii during the vegetative growth, playing a vital role in the accumulation and transportation of biomass energy. They also act as critical indicators of drought in agricultural management, especially for crops having underground stems. During drought, variations in the morphology and gene expression of the leaves and petioles are used to control agricultural irrigation and production. Besides, such stress can also alter the differential gene expression in these tissues. However, little is known about the drought-tolerant character of the aerial parts of A. sieboldii. In this study, we examined the physiological, biochemical and transcriptomic responses to the drought stress in the leaf blades and petioles of A. sieboldii. The molecular mechanism, involving in drought stress response, was elucidated by constructing the cDNA libraries and performing transcriptomic sequencing. Under drought stress, a total of 2912 and 2887 unigenes were differentially expressed in the leaf blade and petiole, respectively. The detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in drought tolerance. In response to drought, the leaf blade and petiole displayed a general physiological character, a higher SOD and POD activity, a higher MDA content and lower chlorophyll content. Three unigenes encoding POD were up-regulated, which can improve POD activity. Essential oil in petiole was extracted. The relative contents of methyleugenol and safrole in essential oil were increased from 0.01% to 0.05%, and 3.89% to 16.97%, respectively, while myristicin slightly reduced from 24.87% to 21.52%. Additionally, an IGS unigene, involved in eugenol biobiosynthesis, was found up-regulated under drought stress, which was predicated to be responsible for the accumulation of methyleugenol and safrole. Simple sequence repeats (SSRs) were characterized in of A. sieboldii, and a total of 5466 SSRs were identified. Among them, mono-nucleotides were the most abundant repeat units, accounting for 44.09% followed by tri-, tetra-, penta and hexa-nucleotide repeats. Overall, the present work provides a valuable resource for the population genetics studies of A. sieboldii. Besides, it provides much genomic information for the functional dissection of the drought-resistance in A. sieboldii, which will be useful to understand the bio-regulatory mechanisms linked with drought-tolerance to enhance its yield.


Assuntos
Asarum/genética , Asarum/metabolismo , Asarum/fisiologia , Derivados de Alilbenzenos , China , Produtos Agrícolas/genética , Dioxolanos , Secas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Repetições de Microssatélites/genética , Óleos Voláteis/química , Folhas de Planta/genética , Plantas Medicinais/genética , Estresse Fisiológico/genética , Transcriptoma/genética
19.
Zhongguo Zhong Yao Za Zhi ; 46(2): 412-419, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33645130

RESUMO

In this paper, Asarum polysaccharides(AP) were extracted, and its composition was analyzed to study the activity against H1 N1 influenza virus in vitro and its intervention effect on mice with kidney Yang deficiency syndrome. AP was prepared by the strategy of water extraction and alcohol precipitation, the content was determined, and its monosaccharide composition was analyzed. The cell Real-time monitoring system and Reed-Muench model were adopted to evaluate the antiviral activity of AP in vitro. And the mouse model of kidney Yang deficiency syndrome was established in vivo to compare the efficacy of Mahuang Xixin Fuzi Decoction(MXF) and AP. MXF group and AP group were treated with clinical equivalent doses of 1.8 g·kg~(-1)·d~(-1) and 0.077 g·kg~(-1)·d~(-1) respectively, once a day for 6 consecutive days. Real-time PCR was used to detect the relative expression of M gene of H1 N1 influenza virus and cytokines in lung tissue. The content of AP in Asarum was 25.22%, and the protein content was 0.8%. And the monosaccharide composition was identified as L-rhamnose, D-arabinose, D-xylose, D-glucose, D-galactose and D-mannose. TI values of Tamiflu, MXF and AP were 30.00, 8.06 and 10.33, respectively. Three different doses of AP could significantly reduce the concentration of virus in supernatant. Compared with the model mice, lung indexes of MXF group and AP group decreased significantly(P<0.05), and the relative expression of M gene decreased significantly(P<0.05). The relative expressions of IL-10 and IFN-γ were up-regulated to varying degrees, while the relative gene expressions of IL-1ß, IL-6 and MCP-1 were down-regulated to different degrees. In addition, AP could significantly enhance the expression of TNF-α(P<0.01). AP had a good anti-influenza virus activity in vitro, and could protect mice with kidney Yang deficiency syndrome by reducing the viral load in lung tissue, decreasing inflammation damage in lung tissue, and regulating the expression of inflammatory cytokines. Compared with the prescription of MXF, AP had a better antiviral activity.


Assuntos
Asarum , Medicamentos de Ervas Chinesas , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Antivirais/uso terapêutico , Citocinas/genética , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Pulmão , Camundongos , Polissacarídeos
20.
Ann Bot ; 126(2): 245-260, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32285123

RESUMO

BACKGROUND AND AIMS: The genus Asarum sect. Heterotropa (Aristolochiaceae) probably experienced rapid diversification into 62 species centred on the Japanese Archipelago and Taiwan, providing an ideal model for studying island adaptive radiation. However, resolving the phylogeny of this plant group using Sanger sequencing-based approaches has been challenging. To uncover the radiation history of Heterotropa, we employed a phylogenomic approach using double-digested RAD-seq (ddRAD-seq) to yield a sufficient number of phylogenetic signals and compared its utility with that of the Sanger sequencing-based approach. METHODS: We first compared the performance of phylogenetic analysis based on the plastid matK and trnL-F regions and nuclear ribosomal internal transcribed spacer (nrITS), and phylogenomic analysis based on ddRAD-seq using a reduced set of the plant materials (83 plant accessions consisting of 50 species, one subspecies and six varieties). We also conducted more thorough phylogenomic analyses including the reconstruction of biogeographic history using comprehensive samples of 135 plant accessions consisting of 54 species, one subspecies, nine varieties of Heterotropa and six outgroup species. KEY RESULTS: Phylogenomic analyses of Heterotropa based on ddRAD-seq were superior to Sanger sequencing-based approaches and resulted in a fully resolved phylogenetic tree with strong support for 72.0-84.8 % (depending on the tree reconstruction methods) of the branches. We clarified the history of Heterotropa radiation and found that A. forbesii, the only deciduous Heterotropa species native to mainland China, is sister to the evergreen species (core Heterotropa) mostly distributed across the Japanese Archipelago and Taiwan. CONCLUSIONS: The core Heterotropa group was divided into nine subclades, each of which had a narrow geographic distribution. Moreover, most estimated dispersal events (22 out of 24) were between adjacent areas, indicating that the range expansion has been geographically restricted throughout the radiation history. The findings enhance our understanding of the remarkable diversification of plant lineages in the Japanese Archipelago and Taiwan.


Assuntos
Aristolochiaceae , Asarum/genética , China , Filogenia , Análise de Sequência de DNA , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA