Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.851
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 20(5): 637-651, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962590

RESUMO

Respiratory infections are common precursors to asthma exacerbations in children, but molecular immune responses that determine whether and how an infection causes an exacerbation are poorly understood. By using systems-scale network analysis, we identify repertoires of cellular transcriptional pathways that lead to and underlie distinct patterns of asthma exacerbation. Specifically, in both virus-associated and nonviral exacerbations, we demonstrate a set of core exacerbation modules, among which epithelial-associated SMAD3 signaling is upregulated and lymphocyte response pathways are downregulated early in exacerbation, followed by later upregulation of effector pathways including epidermal growth factor receptor signaling, extracellular matrix production, mucus hypersecretion, and eosinophil activation. We show an additional set of multiple inflammatory cell pathways involved in virus-associated exacerbations, in contrast to squamous cell pathways associated with nonviral exacerbations. Our work introduces an in vivo molecular platform to investigate, in a clinical setting, both the mechanisms of disease pathogenesis and therapeutic targets to modify exacerbations.


Assuntos
Asma/imunologia , Redes Reguladoras de Genes/imunologia , Transcriptoma/imunologia , Viroses/imunologia , Adolescente , Asma/genética , Asma/virologia , Estudos de Casos e Controles , Criança , Resfriado Comum/genética , Resfriado Comum/imunologia , Resfriado Comum/virologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Viroses/genética , Viroses/virologia
2.
Nat Rev Genet ; 25(8): 534-547, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38448562

RESUMO

Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Asma/genética , Doença Pulmonar Obstrutiva Crônica/genética , Interação Gene-Ambiente , Predisposição Genética para Doença , Doenças Pulmonares Intersticiais/genética , Variação Genética , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Doença Crônica
3.
Mol Cell ; 82(16): 3089-3102.e7, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35931084

RESUMO

The ß2-adrenergic receptor (ß2AR), a prototypic G-protein-coupled receptor (GPCR), is a powerful driver of bronchorelaxation, but the effectiveness of ß-agonist drugs in asthma is limited by desensitization and tachyphylaxis. We find that during activation, the ß2AR is modified by S-nitrosylation, which is essential for both classic desensitization by PKA as well as desensitization of NO-based signaling that mediates bronchorelaxation. Strikingly, S-nitrosylation alone can drive ß2AR internalization in the absence of traditional agonist. Mutant ß2AR refractory to S-nitrosylation (Cys265Ser) exhibits reduced desensitization and internalization, thereby amplifying NO-based signaling, and mice with Cys265Ser mutation are resistant to bronchoconstriction, inflammation, and the development of asthma. S-nitrosylation is thus a central mechanism in ß2AR signaling that may be operative widely among GPCRs and targeted for therapeutic gain.


Assuntos
Asma , Animais , Asma/induzido quimicamente , Asma/genética , Camundongos , Transdução de Sinais
4.
Nature ; 611(7937): 794-800, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323785

RESUMO

Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.


Assuntos
Sistema Imunitário , Imunidade Inata , Linfócitos , Animais , Camundongos , Asma/genética , Asma/imunologia , Asma/patologia , Modelos Animais de Doenças , Eosinófilos/patologia , Imunidade Inata/imunologia , Linfócitos/classificação , Linfócitos/imunologia , Proteínas de Fluorescência Verde , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/patologia
5.
Am J Hum Genet ; 111(5): 966-978, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701746

RESUMO

Replicability is the cornerstone of modern scientific research. Reliable identifications of genotype-phenotype associations that are significant in multiple genome-wide association studies (GWASs) provide stronger evidence for the findings. Current replicability analysis relies on the independence assumption among single-nucleotide polymorphisms (SNPs) and ignores the linkage disequilibrium (LD) structure. We show that such a strategy may produce either overly liberal or overly conservative results in practice. We develop an efficient method, ReAD, to detect replicable SNPs associated with the phenotype from two GWASs accounting for the LD structure. The local dependence structure of SNPs across two heterogeneous studies is captured by a four-state hidden Markov model (HMM) built on two sequences of p values. By incorporating information from adjacent locations via the HMM, our approach provides more accurate SNP significance rankings. ReAD is scalable, platform independent, and more powerful than existing replicability analysis methods with effective false discovery rate control. Through analysis of datasets from two asthma GWASs and two ulcerative colitis GWASs, we show that ReAD can identify replicable genetic loci that existing methods might otherwise miss.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Humanos , Asma/genética , Cadeias de Markov , Colite Ulcerativa/genética , Reprodutibilidade dos Testes , Fenótipo , Genótipo
6.
Nat Immunol ; 16(8): 859-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098997

RESUMO

The receptor NLRP3 is involved in the formation of the NLRP3 inflammasome that activates caspase-1 and mediates the release of interleukin 1ß (IL-1ß) and IL-18. Whether NLRP3 can shape immunological function independently of inflammasomes is unclear. We found that NLRP3 expression in CD4(+) T cells specifically supported a T helper type 2 (TH2) transcriptional program in a cell-intrinsic manner. NLRP3, but not the inflammasome adaptor ASC or caspase-1, positively regulated a TH2 program. In TH2 cells, NLRP3 bound the Il4 promoter and transactivated it in conjunction with the transcription factor IRF4. Nlrp3-deficient TH2 cells supported melanoma tumor growth in an IL-4-dependent manner and also promoted asthma-like symptoms. Our results demonstrate the ability of NLRP3 to act as a key transcription factor in TH2 differentiation.


Assuntos
Proteínas de Transporte/imunologia , Diferenciação Celular/imunologia , Células Th2/imunologia , Transativadores/imunologia , Animais , Asma/genética , Asma/imunologia , Asma/metabolismo , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Ligação Proteica/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th2/metabolismo , Transativadores/genética , Transativadores/metabolismo
7.
Nature ; 599(7886): 628-634, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34662886

RESUMO

A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study2. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P ≤ 2.18 × 10-11. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene-trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.


Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , África/etnologia , Ásia/etnologia , Asma/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , Oftalmopatias/genética , Feminino , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Hepatopatias/genética , Masculino , Mutação , Neoplasias/genética , Característica Quantitativa Herdável , Reino Unido
8.
Proc Natl Acad Sci U S A ; 121(27): e2320727121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923989

RESUMO

Asthma is a widespread airway disorder where GATA3-dependent Type-2 helper T (Th2) cells and group 2 innate lymphoid cells (ILC2s) play vital roles. Asthma-associated single nucleotide polymorphisms (SNPs) are enriched in a region located 926-970 kb downstream from GATA3 in the 10p14 (hG900). However, it is unknown how hG900 affects the pathogenesis of allergic airway inflammation. To investigate the roles of the asthma-associated GATA3 enhancer region in experimental allergic airway inflammation, we first examined the correlation between GATA3 expression and the activation of the hG900 region was analyzed by flow cytometry and ChIP-qPCR. We found that The activation of enhancers in the hG900 region was strongly correlated to the levels of GATA3 in human peripheral T cell subsets. We next generated mice lacking the mG900 region (mG900KO mice) were generated by the CRISPR-Cas9 system, and the development and function of helper T cells and ILCs in mG900KO mice were analyzed in steady-state conditions and allergic airway inflammation induced by papain or house dust mite (HDM). The deletion of the mG900 did not affect the development of lymphocytes in steady-state conditions or allergic airway inflammation induced by papain. However, mG900KO mice exhibited reduced allergic inflammation and Th2 differentiation in the HDM-induced allergic airway inflammation. The analysis of the chromatin conformation around Gata3 by circular chromosome conformation capture coupled to high-throughput sequencing (4C-seq) revealed that the mG900 region interacted with the transcription start site of Gata3 with an influencing chromatin conformation in Th2 cells. These findings indicate that the mG900 region plays a pivotal role in Th2 differentiation and thus enhances allergic airway inflammation.


Assuntos
Asma , Diferenciação Celular , Elementos Facilitadores Genéticos , Fator de Transcrição GATA3 , Células Th2 , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Animais , Células Th2/imunologia , Camundongos , Diferenciação Celular/imunologia , Asma/imunologia , Asma/genética , Asma/patologia , Humanos , Camundongos Knockout , Inflamação/imunologia , Inflamação/genética , Hipersensibilidade/imunologia , Hipersensibilidade/genética , Polimorfismo de Nucleotídeo Único , Camundongos Endogâmicos C57BL
9.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38807262

RESUMO

Sexual dimorphism in prevalence, severity and genetic susceptibility exists for most common diseases. However, most genetic and clinical outcome studies are designed in sex-combined framework considering sex as a covariate. Few sex-specific studies have analyzed males and females separately, which failed to identify gene-by-sex interaction. Here, we propose a novel unified biologically interpretable deep learning-based framework (named SPIN) for sexual dimorphism analysis. We demonstrate that SPIN significantly improved the C-index up to 23.6% in TCGA cancer datasets, and it was further validated using asthma datasets. In addition, SPIN identifies sex-specific and -shared risk loci that are often missed in previous sex-combined/-separate analysis. We also show that SPIN is interpretable for explaining how biological pathways contribute to sexual dimorphism and improve risk prediction in an individual level, which can result in the development of precision medicine tailored to a specific individual's characteristics.


Assuntos
Redes Neurais de Computação , Caracteres Sexuais , Humanos , Feminino , Masculino , Aprendizado Profundo , Neoplasias/genética , Neoplasias/metabolismo , Asma/genética , Predisposição Genética para Doença
10.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39073832

RESUMO

Herbal medicines, particularly traditional Chinese medicines (TCMs), are a rich source of natural products with significant therapeutic potential. However, understanding their mechanisms of action is challenging due to the complexity of their multi-ingredient compositions. We introduced Herb-CMap, a multimodal fusion framework leveraging protein-protein interactions and herb-perturbed gene expression signatures. Utilizing a network-based heat diffusion algorithm, Herb-CMap creates a connectivity map linking herb perturbations to their therapeutic targets, thereby facilitating the prioritization of active ingredients. As a case study, we applied Herb-CMap to Suhuang antitussive capsule (Suhuang), a TCM formula used for treating cough variant asthma (CVA). Using in vivo rat models, our analysis established the transcriptomic signatures of Suhuang and identified its key compounds, such as quercetin and luteolin, and their target genes, including IL17A, PIK3CB, PIK3CD, AKT1, and TNF. These drug-target interactions inhibit the IL-17 signaling pathway and deactivate PI3K, AKT, and NF-κB, effectively reducing lung inflammation and alleviating CVA. The study demonstrates the efficacy of Herb-CMap in elucidating the molecular mechanisms of herbal medicines, offering valuable insights for advancing drug discovery in TCM.


Assuntos
Antitussígenos , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Ratos , Antitussígenos/farmacologia , Antitussígenos/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Asma/tratamento farmacológico , Asma/metabolismo , Asma/genética , Transdução de Sinais/efeitos dos fármacos , Tosse/tratamento farmacológico , Transcriptoma , Humanos
11.
Nat Immunol ; 15(12): 1162-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25362490

RESUMO

MicroRNAs (miRNAs) exert powerful effects on immunological function by tuning networks of target genes that orchestrate cell activity. We sought to identify miRNAs and miRNA-regulated pathways that control the type 2 helper T cell (TH2 cell) responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed elevated expression of the miRNA miR-19a in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promoted TH2 cytokine production and amplified inflammatory signaling by direct targeting of the inositol phosphatase PTEN, the signaling inhibitor SOCS1 and the deubiquitinase A20. Thus, upregulation of miR-19a in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways.


Assuntos
Asma/imunologia , Citocinas/biossíntese , MicroRNAs/imunologia , Células Th2/imunologia , Animais , Asma/genética , Asma/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Ensaios Clínicos como Assunto , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Multiplex , Células Th2/metabolismo , Regulação para Cima
12.
Nat Immunol ; 15(8): 777-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997565

RESUMO

A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.


Assuntos
Asma/genética , Asma/imunologia , Predisposição Genética para Doença , Células Th1/imunologia , Células Th2/imunologia , Adolescente , Adulto , Idoso , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Metilação de DNA/genética , Epigenômica , Feminino , Fator de Transcrição GATA3/genética , Estudo de Associação Genômica Ampla , Histonas/genética , Histonas/imunologia , Humanos , Memória Imunológica/imunologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Ligação Proteica/imunologia , Análise de Sequência de RNA , Proteínas com Domínio T/genética , Adulto Jovem
13.
Nat Immunol ; 15(1): 36-44, 2014 01.
Artigo em Inglês | MEDLINE | ID: mdl-24212998

RESUMO

Eosinophilia is a hallmark characteristic of T helper type 2 (TH2) cell-associated diseases and is critically regulated by the central eosinophil growth factor interleukin 5 (IL-5). Here we demonstrate that IL-5 activity in eosinophils was regulated by paired immunoglobulin-like receptors PIR-A and PIR-B. Upon self-recognition of ß2-microglobulin (ß2M) molecules, PIR-B served as a permissive checkpoint for IL-5-induced development of eosinophils by suppressing the proapoptotic activities of PIR-A, which were mediated by the Grb2-Erk-Bim pathway. PIR-B-deficient bone marrow eosinophils underwent compartmentalized apoptosis, resulting in decreased blood eosinophilia in naive mice and in mice challenged with IL-5. Subsequently, Pirb(-/-) mice displayed impaired aeroallergen-induced lung eosinophilia and induction of lung TH2 cell responses. Collectively, these data uncover an intrinsic, self-limiting pathway regulating IL-5-induced expansion of eosinophils, which has broad implications for eosinophil-associated diseases.


Assuntos
Diferenciação Celular/imunologia , Eosinófilos/imunologia , Interleucina-5/imunologia , Receptores Imunológicos/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Asma/genética , Asma/imunologia , Asma/metabolismo , Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias/métodos , Eosinófilos/citologia , Eosinófilos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Citometria de Fluxo , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/imunologia , Proteína Adaptadora GRB2/metabolismo , Expressão Gênica/imunologia , Interleucina-5/farmacologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia
14.
J Immunol ; 212(8): 1277-1286, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381001

RESUMO

IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.


Assuntos
Asma , MicroRNAs , Animais , Camundongos , Asma/genética , Citocinas/genética , Retroalimentação , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33 , Linfócitos/metabolismo , Mastócitos/metabolismo , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo
15.
J Biol Chem ; 300(4): 107127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432633

RESUMO

Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.


Assuntos
Asma , Proteínas RGS , Animais , Humanos , Camundongos , Asma/metabolismo , Asma/genética , Asma/patologia , Broncoconstrição/genética , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Proteínas RGS/metabolismo , Proteínas RGS/genética , Linhagem Celular
16.
Hum Mol Genet ; 32(4): 696-707, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36255742

RESUMO

BACKGROUND: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel genetic associations. METHODS: We performed family-based genome-wide association analyses of childhood-onset asthma based on whole-genome sequencing (WGS) data for the 'The Genetic Epidemiology of Asthma in Costa Rica' study (GACRS) and the Childhood Asthma Management Program (CAMP). Based on parent-child trios with children diagnosed with asthma, we performed a single variant analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants. RESULTS: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 ($P=1.72\ast{10}^{-9}$, recessive model), rs1581479 on 8p22 ($P=1.47\ast{10}^{-8}$, additive model) and rs73367537 on 10q26 ($P=1.21\ast{10}^{-8}$, additive model in GACRS only). Integrative analyses suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. CONCLUSION: Our family-based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms and generalizability of these associations.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença , Asma/genética , Loci Gênicos , Sequenciamento Completo do Genoma , Polimorfismo de Nucleotídeo Único/genética , Fatores de Crescimento de Fibroblastos/genética
17.
Am J Hum Genet ; 109(6): 989-1006, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35477001

RESUMO

Most disease-associated genetic variants are pleiotropic, affecting multiple genetically correlated traits. Their pleiotropic associations can be mechanistically informative: if many variants have similar patterns of association, they may act via similar pleiotropic mechanisms, forming a shared component of heritability. We developed pleiotropic decomposition regression (PDR) to identify shared components and their underlying genetic variants. We validated PDR on simulated data and identified limitations of existing methods in recovering the true components. We applied PDR to three clusters of five to six traits genetically correlated with coronary artery disease (CAD), asthma, and type II diabetes (T2D), producing biologically interpretable components. For CAD, PDR identified components related to BMI, hypertension, and cholesterol, and it clarified the relationship among these highly correlated risk factors. We assigned variants to components, calculated their posterior-mean effect sizes, and performed out-of-sample validation. Our posterior-mean effect sizes pool statistical power across traits and substantially boost the correlation (r2) between true and estimated effect sizes (compared with the original summary statistics) by 94% and 70% for asthma and T2D out of sample, respectively, and by a predicted 300% for CAD.


Assuntos
Asma , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Asma/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
18.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38205966

RESUMO

Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).


Assuntos
Asma , Multiômica , Adulto , Humanos , Consenso , Análise por Conglomerados , Algoritmos , Asma/genética
19.
FASEB J ; 38(6): e23576, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38530238

RESUMO

High level expression of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) has been associated with severe asthma. The role of MIF and its functional promotor polymorphism in innate immune training is currently unknown. Using novel humanized CATT7 MIF mice, this study is the first to investigate the effect of MIF on bone marrow-derived macrophage (BMDM) memory after house dust mite (HDM) challenge. CATT7 BMDMs demonstrated a significant primed increase in M1 markers following HDM and LPS stimulation, compared to naive mice. This M1 signature was found to be MIF-dependent, as administration of a small molecule MIF inhibitor, SCD-19, blocked the induction of this pro-inflammatory M1-like phenotype in BMDMs from CATT7 mice challenged with HDM. Training naive BMDMs in vitro with HDM for 24 h followed by a rest period and subsequent stimulation with LPS led to significantly increased production of the pro-inflammatory cytokine TNFα in BMDMs from CATT7 mice but not WT mice. Addition of the pan methyltransferase inhibitor MTA before HDM training significantly abrogated this effect in BMDMs from CATT7 mice, suggesting that HDM-induced training is associated with epigenetic remodelling. These findings suggest that trained immunity induced by HDM is under genetic control, playing an important role in asthma patients with the high MIF genotypes (CATT6/7/8).


Assuntos
Asma , Fatores Inibidores da Migração de Macrófagos , Humanos , Animais , Camundongos , Fatores Inibidores da Migração de Macrófagos/genética , Lipopolissacarídeos/toxicidade , Pyroglyphidae , Asma/genética , Inflamação , Oxirredutases Intramoleculares/genética
20.
FASEB J ; 38(15): e23846, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39093041

RESUMO

Epithelial cells play a crucial role in asthma, contributing to chronic inflammation and airway hyperresponsiveness. m6A modification, which involves key proteins such as the demethylase fat mass and obesity-associated protein (FTO), is crucial in the regulation of various diseases, including asthma. However, the role of FTO in epithelial cells and the development of asthma remains unclear. In this study, we investigated the demethylase activity of FTO using a small-molecule inhibitor FB23 in epithelial cells and allergic inflammation in vivo and in vitro. We examined the FTO-regulated transcriptome-wide m6A profiling by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq under FB23 treatment and allergic inflammation conditions. Immunofluorescence staining was performed to assess the tissue-specific expression of FTO in asthmatic bronchial mucosa. We demonstrated that FB23 alleviated allergic inflammation in IL-4/IL-13-treated epithelial cells and house dust mite (HDM)-induced allergic airway inflammation mouse model. The demethylase activity of FTO contributed to the regulation of TNF-α signaling via NF-κB and epithelial-mesenchymal transition-related pathways under allergic inflammation conditions in epithelial cells. FTO was expressed in epithelial, submucosal gland, and smooth muscle cells in human bronchial mucosa. In conclusion, FB23-induced inhibition of FTO alleviates allergic inflammation in epithelial cells and HDM-induced mice, potentially through diverse cellular processes and epithelial-mesenchymal transition signaling pathways, suggesting that FTO is a potential therapeutic target in asthma management.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Asma , Inflamação , Animais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Camundongos , Asma/metabolismo , Asma/genética , Inflamação/metabolismo , Humanos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos BALB C , Feminino , Hipersensibilidade/metabolismo , Hipersensibilidade/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA