RESUMO
Staphylococcus aureus (S. aureus) is an opportunistic gram-positive, non-motile, and non-sporulating bacteria that induces pneumonia, a provocative lung infection affecting mainly the terminal bronchioles and the small air sacs known as alveoli. Recently, it has developed antibiotic resistance to the available consortium as per the WHO reports; thereby, novel remedial targets and resilient medications to forestall and cure this illness are desperately needed. Here, using pan-genomics, a total of 1,387 core proteins were identified. Subtractive proteome analyses further identified 12 proteins that are vital for bacteria. One membrane protein (secY) and two cytoplasmic proteins (asd and trpG) were chosen as possible therapeutic targets concerning minimum % host identity, essentiality, and other cutoff values, such as high resistance in the MDR S. aureus. The UniProt AA sequences of the selected targets were modelled and docked against 3 drug-like chemical libraries. The top-ranked compounds i.e., ZINC82049692, ZINC85492658 and 3a of Isosteviol derivative for Aspartate-semialdehyde dehydrogenase (asd); ZINC38222743, ZINC70455378, and 5 m Isosteviol derivative for Anthranilate synthase component II (trpG); and finally, ZINC72292296, ZINC85632684, and 7 m Isosteviol derivative for Protein translocase subunit secY (secY), were further subjected to molecular dynamics studies for thermodynamic stability and energy calculation. Our study proposes new therapeutic targets in S. aureus, some of which have previously been reported in other pathogenic microorganisms. Owing to further experimental validation, we anticipate that the adapted methodology and the predicted results in this work could make major contributions towards novel drug discovery and their targets in S. aureus caused pneumonia.
Assuntos
Diterpenos do Tipo Caurano , Pneumonia , Staphylococcus aureus , Animais , Staphylococcus aureus/genética , Aspartato-Semialdeído Desidrogenase , Genômica/métodos , Antibacterianos/farmacologia , Descoberta de DrogasRESUMO
Systemic infections from fungal organisms are becoming increasingly difficult to treat as drug resistance continues to emerge. To substantially expand the antifungal drug landscape new compounds must be identified and developed with novel modes of action against previously untested drug targets. Most drugs block the activity of their targets through reversible, noncovalent interactions. However, a significant number of drugs form irreversible, covalent bonds with their selected targets. While more challenging to develop, these irreversible inactivators offer some significant advantages as novel antifungal agents. Vinyl sulfones contain a potentially reactive functional group that could function as a selective enzyme inactivator, and members of this class of compounds are now being developed as inactivators against an antifungal drug target. The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a key step in an essential microbial pathway and is essential for the survival of every microorganism examined. A series of vinyl sulfones have been designed, guided by molecular modeling and docking studies to enhance their affinity for fungal ASADHs. These newly synthesized compounds have been examined against this target enzyme from the pathogenic fungal organism Candida albicans. Vinyl sulfones containing complementary structural elements inhibit this enzyme with inhibition constants in the low-micromolar range. These inhibitors have also led to the rapid and irreversible inactivation of this enzyme, and show some initial selectivity when compared to the inactivation of a bacterial ASADH. The best inactivators will serve as lead compounds for the development of potent and selective antifungal agents.
Assuntos
Antifúngicos , Inibidores Enzimáticos , Antifúngicos/farmacologia , Aspartato-Semialdeído Desidrogenase , Candida albicans , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , SulfonasRESUMO
This in silico work was carried out to reveal the proposed anti-fungal efficacy of some clove ingredient compounds against aspartate semialdehyde dehydrogenase, 6C8W and 6C85, enzymes from Blastomyces dermatitidis. The molecular docking simulation was implemented utilizing the Auto Dock 4.2. software. A set of 17 compounds were selected for this study, which is known to be active ingredients of Syzygium aromaticum crude and oil. The best docking scores associated with the Blastomyces dermatitidis enzymes 6C85 and 6C8W were for Maslinic acid and Oleanolic acid, followed by Stigmasterol and Campesterol. It was found that these compounds possess inhibitory potential against 6C85 and 6C8W and hence have anti-fungal efficacy. Maslinic acid and Oleanolic acid produced the strongest binding to 6C85 and 6C8W over the remaining bioactive compounds by forming H-bonds with some amino acids in these enzymes.
Assuntos
Antifúngicos/farmacologia , Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Blastomyces/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Syzygium , Antifúngicos/isolamento & purificação , Aspartato-Semialdeído Desidrogenase/metabolismo , Blastomyces/enzimologia , Domínio Catalítico , Inibidores Enzimáticos/isolamento & purificação , Proteínas Fúngicas/metabolismo , Ligação de Hidrogênio , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Extratos Vegetais/isolamento & purificação , Conformação Proteica , Relação Estrutura-Atividade , Syzygium/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologiaRESUMO
Potent inhibitors of an essential microbial enzyme have been shown to be effective growth inhibitors of Candida albicans, a pathogenic fungus. C. albicans is the main cause of oropharyngeal candidiasis, and also causes invasive fungal infections, including systemic sepsis, leading to serious complications in immunocompromised patients. As the rates of drug-resistant fungal infections continue to rise novel antifungal treatments are desperately needed. The enzyme aspartate semialdehyde dehydrogenase (ASADH) is critical for the functioning of the aspartate biosynthetic pathway in microbes and plants. Because the aspartate pathway is absent in humans, ASADH has the potential to be a promising new target for antifungal research. Deleting the asd gene encoding for ASADH significantly decreases the survival of C. albicans, establishing this enzyme as essential for this organism. Previously developed ASADH inhibitors were tested against several strains of C. albicans to measure their possible therapeutic impact. The more potent inhibitors show a good correlation between enzyme inhibitor potency and fungal growth inhibition. Growth curves generated by incubating different C. albicans strains with varying enzyme inhibitor levels show significant slowing of fungal growth by these inhibitors against each of these strains, similar to the effect observed with a clinical antifungal drug. The most effective inhibitors also demonstrated relatively low cytotoxicity against a human epithelial cell line. Taken together, these results establish that the ASADH enzyme is a promising new target for further development as a novel antifungal treatment against C. albicans and related fungal species.
Assuntos
Antifúngicos/farmacologia , Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Benzoquinonas/farmacologia , Candida albicans/efeitos dos fármacos , Naftoquinonas/farmacologia , Aspartato-Semialdeído Desidrogenase/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Deleção de Genes , Humanos , Mucosa Bucal/citologiaRESUMO
Helicobacter pylori infection is a WHO class 1 carcinogenic factor of gastric adenocarcinoma. In the past decades, many studies have demonstrated the increasing trend of antibiotic resistance and pointed out the necessity of new effective treatment. This study was aimed at identifying phytochemicals that can inhibit H. pylori and possibly serve as adjuvant treatments. Here, in silico molecular docking and drug-like properties analyses were performed to identify potential inhibitors of urease, shikimate kinase and aspartate-semialdehyde dehydrogenase. These three enzymes are targets of the treatment of H. pylori. Susceptibility and synergistic testing were performed on the selected phytochemicals and the positive control antibiotic, amoxicillin. The in-silico study revealed that oroxindin, rosmarinic acid and verbascoside are inhibitors of urease, shikimate kinase and aspartate-semialdehyde dehydrogenase, respectively, in which, oroxindin has the highest potency against H. pylori, indicated by a minimum inhibitory concentration (MIC) value of 50 µg/mL. A combination of oroxindin and amoxicillin demonstrated additive effects against H. pylori, as indicated by a fractional inhibitory concentration (FIC) value of 0.75. This study identified phytochemicals that deserve further investigation for the development of adjuvant therapeutic agents to current antibiotics against H. pylori.
Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Antibacterianos/química , Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Cromonas/química , Cromonas/farmacologia , Cinamatos/química , Cinamatos/farmacologia , Claritromicina/farmacologia , Simulação por Computador , Depsídeos/química , Depsídeos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Glucosídeos/química , Glucosídeos/farmacologia , Glucuronatos/química , Glucuronatos/farmacologia , Simulação de Acoplamento Molecular , Fenóis/química , Fenóis/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Compostos Fitoquímicos/química , Urease/antagonistas & inibidores , Ácido RosmarínicoRESUMO
The emergence of multi-drug resistant strains and co-occurrence of tuberculosis with HIV creates a major burden to the human health globally. Failure of primary antibacterial therapy necessitates the identification of new mycobacterial drugs. In this study, a comprehensive analysis involving bottom-up systems biology approach was applied wherein we have identified potential therapeutic targets of Mycobacterium tuberculosis infections. Our study prioritized M. tuberculosis therapeutic targets (aspartate-ß-semialdeyhde dehydrogenase [ASD], dihydrodipicolinate reductase and diaminopimelate decarboxylase) based on flux and elementary mode analysis using direct mathematical modeling of the relevant metabolic pathways. Molecular docking and simulation studies of the priority target (ie, ASD) revealed the therapeutic potential of the selected natural products (Huperzine A, Rosmarinic acid, and Curcumin) based ASD inhibitors. The study highlights the crucial role of systems biology in conjunction with molecular interaction (docking) for probing novel leads against an increasingly resistant pathogen, M. tuberculousis.
Assuntos
Antituberculosos/química , Aspartato-Semialdeído Desidrogenase , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Aspartato-Semialdeído Desidrogenase/química , Simulação por Computador , Tuberculose/tratamento farmacológico , Tuberculose/enzimologiaRESUMO
The aspartate pathway, uniquely found in plants and microorganisms, offers novel potential targets for the development of new antimicrobial drugs. Aspartate semialdehyde dehydrogenase (ASADH) catalyzes production of a key intermediate at the first branch point in this pathway. Several fungal ASADH structures have been determined, but the prior crystallization conditions had precluded complex formation with enzyme inhibitors. The first inhibitor-bound and cofactor-bound structures of ASADH from the pathogenic fungi Blastomyces dermatitidis have now been determined, along with a structural and functional comparison to other ASADH family members. The structure of this new ASADH is similar to the other fungal orthologs, but with some critical differences in the orientation of some active site functional groups and in the subunit interface region. The presence of this bound inhibitor reveals the first details about inhibitor binding interactions, and the flexible orientation of its aromatic ring provides helpful insights into the design of potentially more potent and selective antifungal compounds.
Assuntos
Aspartato-Semialdeído Desidrogenase/química , Ácido Aspártico/química , Blastomyces/química , Coenzimas/química , Proteínas Fúngicas/química , NADP/química , Sequência de Aminoácidos , Aspartato-Semialdeído Desidrogenase/genética , Aspartato-Semialdeído Desidrogenase/metabolismo , Ácido Aspártico/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Blastomyces/enzimologia , Domínio Catalítico , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Simulação de Acoplamento Molecular , NADP/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , TermodinâmicaRESUMO
L-Aspartate-ß-semialdehyde dehydrogenase (ASADH) is a key enzyme in the aspartate pathway. In bacteria, ASADH is highly specific for the cofactor NADP(+) rather than NAD(+). Limited information on cofactor utilization is available, and neither the wild-type protein nor the available mutants could utilize NAD(+) efficiently. In this study, we identified several residues crucial for cofactor utilization by Escherichia coli ASADH (ecASADH) by mutating residues within the cofactor binding center. Among the investigated mutants, ecASADH-Q350N and ecASADH-Q350N/H171A, which exhibited markedly improved NAD(+) utilization, were further investigated by various biochemical approaches and molecular modeling. Relative to the wild type, the two mutants showed approximately 44-fold and 66-fold increases, respectively, in the constant kcat /Km of NAD(+). As desired, they could also utilize NADH efficiently to synthesize l-homoserine in cascade reactions in vitro.
Assuntos
Aspartato-Semialdeído Desidrogenase/genética , Aspartato-Semialdeído Desidrogenase/metabolismo , Escherichia coli/enzimologia , NAD/metabolismo , Aspartato-Semialdeído Desidrogenase/isolamento & purificação , Sítios de Ligação , Ativação Enzimática/genética , Escherichia coli/citologia , Escherichia coli/metabolismo , Modelos Moleculares , MutagêneseRESUMO
The gene encoding a quinoprotein aldose sugar dehydrogenase (ASD) from Thermus thermophilus HJ6 (Tt_ASD) was cloned and sequenced; it comprised 1059 nucleotides encoding a protein containing 352 amino acids that had a predicted molecular mass of 38.9 kDa. The deduced amino acid sequence showed 42.9% and 33.9% identities to the ASD proteins from Pyrobaculum aerophilum and Escherichia coli, respectively. The biochemical properties of Tt_ASD were characterized. The optimum pH for the oxidation of glucose was 7.0-7.5 and the optimum temperature was 70 °C. The half-life of heat inactivation for the apoenzyme was about 25 min at 85 °C. The enzyme was highly thermostable, and the activity of the pyrroloquinoline quinone-bound holoenzyme was not lost after incubation at 85 °C for 100 min. Tt_ASD could oxidize various sugars, including hexoses, pentoses, disaccharides, and polysaccharides, in addition to alcohols. Structural analysis suggested that Tyr156 would be the substrate-binding residue. Two mutants, Y156A and Y156K, had impaired activities and affinities for all substrates and completely lost their activities for alcohols. This structural and mutational analysis of Tt_ASD demonstrates the crucial role of Tyr156 in determining substrate specificity.
Assuntos
Aspartato-Semialdeído Desidrogenase/química , Proteínas de Bactérias/química , Análise Mutacional de DNA , Thermus thermophilus/genética , Aspartato-Semialdeído Desidrogenase/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Conformação Molecular , Mutação , Fases de Leitura Aberta , Cofator PQQ/química , Cofator PQQ/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato , Temperatura , Thermus thermophilus/enzimologia , Tirosina/química , Tirosina/genéticaRESUMO
Aspartate-ß-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme.
Assuntos
Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Aspartato-Semialdeído Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Streptococcus pneumoniae/enzimologia , Relação Estrutura-AtividadeRESUMO
Aspartic acid semialdehyde dehydrogenase (ASADH) lies at the first branch point in the essential aspartic acid biosynthetic pathway that is found in bacteria and plants but is absent from animals. Mutations in the asadh gene encoding ASADH produce an inactive enzyme, which is lethal. Therefore, in this study, we investigated the hypothesis that ASADH represents a new anti-Mycobacterium tuberculosis (MTB) target. An asadh promoter-replacement mutant MTB, designated MTB::asadh, in which asadh gene expression is regulated by pristinamycin, was constructed to investigate the physiological functions of ASADH in the host bacteria. Bacterial growth was evaluated by monitoring OD600 and ASADH expression was analyzed by Western blotting. The results showed that the growth and survival of MTB::asadh was completely inhibited in the absence of the inducer pristinamycin. Furthermore, the growth of the mutant was rigorously dependent on the presence of the inducer in the medium. The starved mutant exhibited a marked reduction (approximately 80%) in the cell wall materials compared to the wild-type, in addition to obvious morphological differences that were apparent in scanning electron microscopy studies; however, with the addition of pristinamycin, the cell wall contents and morphology similar to those of the wild-type strain were recovered. The starved mutant also exhibited almost no pathogenicity in an in vitro model of infection using mouse macrophage J774A.1 cells. The mutant showed a concentration-dependent recovery of pathogenicity with the addition of the inducer. These findings implicate ASADH as a promising target for the development of novel anti-MTB drugs.
Assuntos
Antituberculosos/farmacologia , Aspartato-Semialdeído Desidrogenase/metabolismo , Mycobacterium tuberculosis/enzimologia , Animais , Western Blotting , Linhagem Celular , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Eletroforese em Gel de Ágar , Camundongos , Mutação/genética , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos TestesRESUMO
The aspartate pathway is essential for the production of the amino acids required for protein synthesis and of the metabolites needed in bacterial development. This pathway also leads to the production of several classes of quorum-sensing molecules that can trigger virulence in certain microorganisms. The second enzyme in this pathway, aspartate ß-semialdehyde dehydrogenase (ASADH), is absolutely required for bacterial survival and has been targeted for the design of selective inhibitors. Fragment-library screening has identified a new set of inhibitors that, while they do not resemble the substrates for this reaction, have been shown to bind at the active site of ASADH. Structure-guided development of these lead compounds has produced moderate inhibitors of the target enzyme, with some selectivity observed between the Gram-negative and Gram-positive orthologs of ASADH. However, many of these inhibitor analogs and derivatives have not yet achieved the expected enhanced affinity. Structural characterization of these enzyme-inhibitor complexes has provided detailed explanations for the barriers that interfere with optimal binding. Despite binding in the same active-site region, significant changes are observed in the orientation of these bound inhibitors that are caused by relatively modest structural alterations. Taken together, these studies present a cautionary tale for issues that can arise in the systematic approach to the modification of lead compounds that are being used to develop potent inhibitors.
Assuntos
Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Aspartato-Semialdeído Desidrogenase/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Streptococcus pneumoniae/enzimologia , Vibrio cholerae/enzimologia , Aspartato-Semialdeído Desidrogenase/metabolismo , Ácido Aspártico/metabolismo , Vias Biossintéticas , Domínio Catalítico , Cólera/microbiologia , Cristalografia por Raios X , Humanos , Modelos Moleculares , Infecções Pneumocócicas/microbiologia , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Streptococcus pneumoniae/química , Streptococcus pneumoniae/metabolismo , Vibrio cholerae/química , Vibrio cholerae/metabolismoRESUMO
Aspartate ß-semialdehyde dehydrogenase (ASADH) is a key enzyme in the biosynthesis of essential amino acids in microorganisms and some plants. Inhibition of ASADHs can be a potential drug target for developing novel antimicrobial and herbicidal compounds. This review covers up-to-date information about sequence diversity, ligand/inhibitor-bound 3D structures, potential inhibitors, and key pharmacophoric features of ASADH useful in designing novel and target-specific inhibitors of ASADH. Most reported ASADH inhibitors have two highly electronegative functional groups that interact with two key arginyl residues present in the active site of ASADHs. The structural information, active site binding modes, and key interactions between the enzyme and inhibitors serve as the basis for designing new and potent inhibitors against the ASADH family.
Assuntos
Aspartato-Semialdeído Desidrogenase , Inibidores Enzimáticos , Aspartato-Semialdeído Desidrogenase/química , Aspartato-Semialdeído Desidrogenase/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/químicaRESUMO
The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP+ induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP+ does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.
Assuntos
Aspartato-Semialdeído Desidrogenase , Brugia Malayi , Multimerização Proteica , Wolbachia , Brugia Malayi/enzimologia , Brugia Malayi/microbiologia , Concentração de Íons de Hidrogênio , Animais , Aspartato-Semialdeído Desidrogenase/metabolismo , Aspartato-Semialdeído Desidrogenase/química , Aspartato-Semialdeído Desidrogenase/genética , Wolbachia/enzimologia , Simulação de Dinâmica Molecular , Simulação por Computador , Simbiose , NADP/metabolismoRESUMO
Large bacterial plasmid constructs (generally 25-100 kb, but can be greater), such as those engineered with DNA encoding specific functions such as protein secretion or specialized metabolism, can carry antibiotic resistance genes and/or conjugation systems that typically must be removed before use in medical or environmental settings due to biosafety concerns. However, a convenient in vivo recombineering approach for intact large plasmids to sequentially remove multiple different genes using non-antibiotic selection methods is not described in the literature to our knowledge. We developed strategies and reagents for convenient removal of antibiotic resistance markers and conjugation genes while retaining non-antibiotic-based plasmid selection to increase practical utility of large engineered plasmids. This approach utilizes targeted lambda Red recombination of PCR products encoding the trpE and asd genes and as well as FLP/FRT-mediated marker removal. This is particularly important given that use of restriction enzymes with plasmids of this size is extremely problematic and often not feasible. This report provides the first example of the trpE gene/tryptophan prototrophy being used for recombineering selection. We applied this strategy to the plasmids R995+SPI-1 and R995+SPI-2 which encode cloned type III secretion systems to allow protein secretion and substrate delivery to eukaryotic cells. The resulting constructs are functional, stably maintained under conditions where the original constructs are unstable, completely defective for conjugative transfer, and transferred via electroporation.
Assuntos
Antranilato Sintase/genética , Aspartato-Semialdeído Desidrogenase/genética , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos , Salmonella typhimurium/genética , Animais , Sistemas de Secreção Bacterianos/genética , Clonagem Molecular , Eletroporação , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Engenharia Genética , Vetores Genéticos , Humanos , Recombinação Genética , Transformação Genética , Triptofano/metabolismoRESUMO
The present study evaluated the adjuvant effect of live attenuated salmonella organisms expressing the heat-labile toxin of Escherichia coli B subunit (LTB) on the efficacy of an avian pathogenic Escherichia coli (APEC) vaccine. The Asd(+) (aspartate semialdehyde dehydrogenase) plasmid pMMP906 containing the LTB gene was introduced into a Salmonella enterica Typhimurium strain lacking the lon, cpxR and asd genes to generate the adjuvant strain. Live recombinant Salmonella-delivered APEC vaccine candidates were used for this study. The birds were divided into three groups: group A, non-vaccinated controls; group B, immunized with vaccine candidates only; and group C, immunized with vaccine candidates and the LTB strain. The immune responses were measured and the birds were challenged at 21 days of age with a virulent APEC strain. Group C showed a significant increase in plasma IgG and intestinal IgA levels and a significantly higher lymphocyte proliferation response compared with the other groups. Upon challenge with the virulent APEC strain, group C showed effective protection whereas group B did not. We also attempted to optimize the effective dose of the adjuvant. The birds were immunized with the vaccine candidates together with 1×107 or 1×108 colony-forming units of the LTB strain and were subsequently challenged at 3 weeks of age. The 1×107 colony-forming units of the LTB strain showed a greater adjuvant effect with increased levels of serum IgG, intestinal IgA and a potent lymphocyte proliferation response, and yielded higher protection against challenge. Overall, the LTB strain increased the efficacy of the Salmonella -delivered APEC vaccine, indicating that vaccination for APEC along with the LTB strain appears to increase the efficacy for protection against colibacillosis in broiler chickens.
Assuntos
Toxinas Bacterianas/metabolismo , Galinhas , Enterotoxinas/metabolismo , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Vacinas contra Escherichia coli/farmacologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Atenuadas/farmacologia , Adjuvantes Imunológicos/metabolismo , Animais , Aspartato-Semialdeído Desidrogenase/genética , Peso Corporal , Ensaio de Imunoadsorção Enzimática/veterinária , Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/metabolismo , Imunoglobulina A Secretora/sangue , Linfotoxina-beta/genética , Plasmídeos/genética , Salmonella typhimurium , Vacinas Atenuadas/metabolismoRESUMO
Aspartate-semialdehyde dehydrogenase (Asd; ASADH; EC 1.2.1.11) is the enzyme that lies at the first branch point in the biosynthetic pathway of important amino acids including lysine and methionine and the cell-wall component diaminopimelate (DAP). The enzymatic reaction of ASADH is the reductive dephosphorylation of aspartyl-ß-phosphate (ABP) to aspartate ß-semialdehyde (ASA). Since the aspartate pathway is absolutely essential for the survival of many microbes and is absent in humans, the enzymes involved in this pathway can be considered to be potential antibacterial drug targets. In this work, the structure of ASADH from Mycobacterium tuberculosis H37Rv (Mtb-ASADH) has been determined in complex with glycerol and sulfate at 2.18 Å resolution and in complex with S-methyl-L-cysteine sulfoxide (SMCS) and sulfate at 1.95 Å resolution. The overall structure of Mtb-ASADH is similar to those of its orthologues. However, in the Mtb-ASADH-glycerol complex structure the glycerol molecule is noncovalently bound to the active-site residue Cys130, while in the Mtb-ASADH-SMCS complex structure the SMCS (Cys) is covalently linked to Cys130. The Mtb-ASADH-SMCS complex structurally mimics one of the intermediate steps in the proposed mechanism of ASADH enzyme catalysis. Comparison of the two complex structures revealed that the amino acids Glu224 and Arg249 undergo conformational changes upon binding of glycerol. Moreover, the structures reported here may help in the development of species-specific antibacterial drug molecules against human pathogens.
Assuntos
Aspartato-Semialdeído Desidrogenase/química , Mycobacterium tuberculosis/enzimologia , Aspartato-Semialdeído Desidrogenase/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Sulfatos/química , Sulfatos/metabolismoRESUMO
Microbes that have gained resistance against antibiotics pose a major emerging threat to human health. New targets must be identified that will guide the development of new classes of antibiotics. The selective inhibition of key microbial enzymes that are responsible for the biosynthesis of essential metabolites can be an effective way to counter this growing threat. Aspartate semialdehyde dehydrogenases (ASADHs) produce an early branch point metabolite in a microbial biosynthetic pathway for essential amino acids and for quorum sensing molecules. In this study, molecular modeling and docking studies were performed to achieve two key objectives that are important for the identification of new selective inhibitors of ASADH. First, virtual screening of a small library of compounds was used to identify new core structures that could serve as potential inhibitors of the ASADHs. Compounds have been identified from diverse chemical classes that are predicted to bind to ASADH with high affinity. Next, molecular docking studies were used to prioritize analogs within each class for synthesis and testing against representative bacterial forms of ASADH from Streptococcus pneumoniae and Vibrio cholerae. These studies have led to new micromolar inhibitors of ASADH, demonstrating the utility of this molecular modeling and docking approach for the identification of new classes of potential enzyme inhibitors.
Assuntos
Aspartato-Semialdeído Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/química , Aspartato-Semialdeído Desidrogenase/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/síntese química , Cinética , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Streptococcus pneumoniae/enzimologia , Vibrio cholerae/enzimologiaRESUMO
Aspartate Semialdehyde Dehydrogenase (ASDH) is an important enzyme essential for the viability of pathogenic microorganisms. ASDH is mainly involved in amino acid and cell wall biosynthesis of microorganisms, hence it is considered to be a promising target for drug design. This enzyme depicts similar mechanistic function in all microorganisms; although, the kinetic efficiency of an enzyme differs according to their active site residual composition. Therefore, understanding the residual variation and kinetic efficiency of the enzyme would pave new insights in structure-based drug discovery and a novel drug molecule against ASDH. Here, ASDH from Wolbachia endosymbiont of Brugia malayi is used as a prime enzyme to execute evolutionary studies. The phylogenetic analysis was opted to classify 400 sequences of ASDH enzymes based on their structure and electrostatic surfaces. Analysis resulted in 37 monophyletic clades of diverse pathogenic and non-pathogenic organisms. The representative structures of 37 ASDHs from different clades were further deciphered to structural homologues. These enzymes exhibited presence of more positively charged surfaces than negatively charged surfaces in the active site pocket which restrains evolutionary significance. Docking studies of NADP+ with 37 enzymes reveals that site-specific residual variation in the active site pocket modulates the binding affinity (ranges of -13 to -9 kcal/mol). Type-I and Type-II divergence studies show, no significant functional divergence among ASDH, but residual changes were found among the enzyme that modulates the biochemical characteristics and catalytic efficiency. The present study not only explores residual alteration and catalytic variability, it also aids in the design of species-specific inhibitors.Communicated by Ramaswamy H. Sarma.
Assuntos
Aspartato-Semialdeído Desidrogenase , Evolução Molecular , Sequência de Aminoácidos , Aspartato-Semialdeído Desidrogenase/química , Aspartato-Semialdeído Desidrogenase/genética , Sítios de Ligação , FilogeniaRESUMO
Gonorrhoea infection rates and the risk of infection from opportunistic pathogens including P. aeruginosa have both risen globally, in part due to increasing broad-spectrum antibiotic resistance. Development of new antimicrobial drugs is necessary and urgent to counter infections from drug resistant bacteria. Aspartate-semialdehyde dehydrogenase (ASADH) is a key enzyme in the aspartate biosynthetic pathway, which is critical for amino acid and metabolite biosynthesis in most microorganisms including important human pathogens. Here we present the first structures of two ASADH proteins from N. gonorrhoeae and P. aeruginosa solved by X-ray crystallography. These high-resolution structures present an ideal platform for in silico drug design, offering potential targets for antimicrobial drug development as emerging multidrug resistant strains of bacteria become more prevalent.